
Software Project Management:

Methodologies & Techniques

SE Project 2003/2004 group E

17th September 2004

SE Project 2003/2004 group E
Software Engineering Project (2IP40)
Department of Mathematics & Computer Science
Technische Universiteit Eindhoven

Rico Huijbers 0499062
Funs Lemmens 0466028
Bram Senders 0511873
Sjoerd Simons 0459944
Bert Spaan 0494483
Paul van Tilburg 0459098
Koen Vossen 0559300

Abstract

This essay discusses a variety of commonly used software project man-

agement methodologies and techniques. Their application, advantages

and disadvantages are discussed as well as their relation to each other.

The methodologies RUP, SSADM, PRINCE2, XP, Scrum and Crystal

Clear are discussed, as well as the techniques PMBOK, COCOMO, MTA,

EV and Critical path.

CONTENTS 2

Contents

1 Introduction 3

2 Preliminaries 3

2.1 List of definitions . 3

2.2 List of acronyms . 4

3 Methodologies 5

3.1 RUP . 5

3.2 SSADM . 7

3.3 PRINCE2 . 11

3.4 XP . 15

3.5 Scrum . 17

3.6 Crystal Clear . 19

4 Project techniques 23

4.1 PMBOK . 23

4.2 COCOMO . 25

4.3 MTA . 28

4.4 EV management . 30

4.5 Critical path . 32

5 Conclusion 34

References 34

1 INTRODUCTION 3

1 Introduction

There exist numerous project management methodologies and techniques in
the world. This essay aims to make a selection and present an overview of the
commonly used methodologies and techniques. Except for the usage also the
availability of information and resources on the subject was a factor in selecting
the methodologies and/or techniques.

This essay gives a global description of each of the selected methodologies, dis-
cusses their key points, advantages and disadvantages. Finally possible cou-
plings with other discussed methodologies are considered. Each technique is
discussed the same way, except that instead of the coupling, possible usages of
the technique in other methodologies are considered.

The next section explains common terms, definitions and acronyms used through-
out this document. Section 3 discusses a number of thin and thick project man-
agement methodologies. Section 4 will elaborate on some project management
techniques and their usage in the discussed methodologies. This document will
be concluded in the last section, Section 5.

2 Preliminaries

This section provides an overview over commonly used terms, definitions and
acronyms used throughout the document.

2.1 List of definitions

Since there seems to be a lot of confusion, or at least different opinions, con-
cerning the meaning of the following definitions, they are defined here as they
are used in the remainder of this document.

• Methodology: A codified set of recommended practices, sometimes ac-
companied by training materials, formal educational programs, worksheets
and diagramming tools.

• Thick methodology: A methodology that includes a large amount of
formal process paperwork and documentation

• Thin methodology: A methodology that eschews formal process paper-
work and documentation.

• Project management: The process of planning, organising, staffing,
directing and controlling the production of software.

• Technique: A way of efficiently acquiring information of a software
project in a manner that is not immediately obvious or straightforward.

The definitions are taken from [METH-WKP] but can also be found in [FOLDOC]
and much more other sources.

2 PRELIMINARIES 4

2.2 List of acronyms

BSO Business Systems Options

CASE Computer Aided Software Engineering

CCTA Central Computing and Telecommunications Agency

COCOMO Constructive Cost Model

CPM Critical Path Method

DFD Data Flow Diagram

DFM Data Flow Modelling

ELH Entity Life History

EM Entity/Event Modelling

EV Earned Value

LDM Logical Data Modelling

LDS Logical Data Structure

MTA Milestone Trend Analysis

OGC Office of Government Commerce

PB Project Board

PERT Program Evaluation and Review Technique

PID Project Initiation Document

PM Project Management

PMBOK Project Management Body of Knowledge

PPR Post Project Review

PPRP Post Project Review Plan

PRINCE Projects in Controlled Environments

RUP Rational Unified Process

SSADM Structured Systems Analysis and Design Methodology

UML Unified Modeling Language

XP eXtreme Programming

3 METHODOLOGIES 5

3 Methodologies

In this section, we highlight a number of commonly used Software develop-
ment methodologies. We consider both thick and thin (also called ‘lightweight’)
methodologies. In this essay, the thick methodologies we consider are RUP,
SSADM and PRINCE2. XP, SCRUM and Crystal Clear are considered as thin
methodologies.

When discussing each methodology, we will focus on the management and busi-
ness aspects of the methodology.

3.1 Rational Unified Process (RUP)

The Rational Unified Process (RUP) is a software design methodology created
by the Rational Software Company. The Rational Software Company was ac-
quired by IBM in 2003. RUP is a thick methodology; the whole software design
process is described with high detail. RUP is hence particularly applicable
on larger software projects. The RUP methodology is general enough to be
used out of the box, but the modular nature of RUP—it is designed and docu-
mented using Unified Modeling Language (UML)—also makes it easy to adapt
the methodology to the special needs of a single project or company.

One of the major differences between RUP and other methodologies like SSADM
(see Section 3.2) is that RUP doesn’t use a waterfall approach for software devel-
opment. The phases of requirements, analysis, design, implementation, integra-
tion and testing are not done in strict sequence. In RUP, an iterative approach
is used: a software product is designed and built in a succession of incremental
iterations. Each iteration includes some, or most, of the development disciplines
(requirements, analysis, design, implementation, testing, and so on). Figure 1
shows one iteration of a RUP project in a graphical way.

For more detailed descriptions of RUP, see [RUP-WEB] and [RUP-BOOK].

Application area

Due to the modular nature of RUP, it can be used for all sorts of software
projects. It is even possible to use RUP for non-software projects. However,
because of the complexity of the RUP methodology, it is used mostly for larger
software projects.

Advantages

• The iterative approach leads to higher efficiency. Testing takes place in
each iteration, not just at the end of the project life cycle. This way,
problems are noticed earlier, and are therefore easier and cheaper to re-
solve. When using a waterfall approach, it can happen that, for example,
software programmers have to wait for the completion of the design phase
before starting implementing and integrate the design. Designing and

3 METHODOLOGIES 6

Figure 1: The iterative approach to software development [RUP-IMG]

building a software project with an iterative approach solves this prob-
lem. Integration and implementation will not only happen at the end
of the project, but in every iteration. This saves time, since more team
members can work more of the time.

• Managing changes in software requirements will be made easier by using
RUP. Unless a software project is very small, it is nearly impossible to
define all the software requirements at the beginning of a project. It will
almost always take more than one step to know what the final software
product will look like, for the customer as well as for the project mem-
bers. Developing with iterations makes this process of changing, “creep-
ing” requirements, that often leads to missed schedules and dissatisfied
customers, less troublesome.

• RUP itself is software, too, and is distributed in an electronic and online
form. Team members don’t need to leave their computers for RUP re-
lated activities. No more searching in big, dusty books. All information
about the software development methodology is available at the project
members’ fingertips. Also, the newest version of RUP is always present on
the computer of each team member. And even more important, it makes
sure that every team member is using the same version of RUP. RUP is
designed and documented using UML, in an object oriented way. This
makes it easy to adapt RUP to the special needs of a single project or
organization.

3 METHODOLOGIES 7

Disadvantages

• RUP is a commercial product, no open or free standard. Before RUP can
be used, the RUP has to be bought from IBM, as an electronic software
and documentation package (a trial version can be downloaded from the
IBM website, however). The RUP only exists in an electronic form, which
can sometimes limit its use.

• RUP, as said before, describes the whole software design process with high
detail; it is a very complex methodology, difficult to comprehend for both
project managers and project members. Therefore, it is not the most
appropriate software design methodology for most small projects.

• Starting to use RUP as software development methodology is difficult.
Everyone participating in the project will have to learn working with RUP.
For details about applying RUP on projects, see [RUP-TRANS].

Coupling with other methodologies

RUP is a thick methodology, and coupling with other methodologies is therefore
not always possible. There is a way to couple the Crystal Clear methodology
with RUP. See Section 3.6 for more information.

3.2 SSADM

Structured Systems Analysis and Design Methodology (SSADM) is a widely
used computer application development method in the UK. Just like PRINCE
(see Section 3.3), its use is often specified as a requirement for government
computing projects. Today it is increasingly being adopted by the public sector
in Europe.

“SSADM has been used by the government in computing since its
launch in 1981. It was commissioned by the Central Computing
and Telecommunications Agency (CCTA) in a bid to standardize
the many and varied IT projects being developed across government
departments. The CCTA investigated a number of approaches be-
fore accepting a tender from Learmonth & Burchett Management
Systems to develop a method.” [SSADM-GUI]

Since 1981 SSADM has been further developed and refined and in 1990 version 4
of it was launched. SSADM is an open standard, which means that it is freely
available for use in industry and many companies offer support, training and
Computer Aided Software Engineering (CASE) tools for it.

In detail, SSADM sets out a cascade or waterfall view of systems development,
in which there are a series of steps, each of which leads to the next step (see the
model in Figure 2). SSADM’s steps are [SSADM-INTR]:

3 METHODOLOGIES 8

Figure 2: SSADM—Process Model [SSADM-WEB]

1. Feasibility Study: The feasibility study consists of one single stage,
which involves conducting a high level analysis of a business area to deter-
mine whether a system can cost effectively support the business require-
ments. In the Feasibility Study an overview Data Flow Diagram (DFD)
is produced together with a high level Logical Data Structure (LDS). At
this stage the DFD will represent the existing system and the LDS may
be incomplete and contain unresolved many-to-many relationships.

2. Requirements Analysis:

• Investigation of the current environment—During this stage
the systems requirements are identified and the current business en-
vironment is modelled in terms of the processes carried out and the
data structures involved. In this DFDs and LDSs are used to produce
detailed logical models of the current system.

• Business Systems Options (BSO)—During this stage up to six
business system options are produced and presented. As a result
one of these options is adopted and refined. DFDs and LDSs are
produced to support each business system option and the final chosen
option. The transition from the former stage to this stage is a key
part of SSADM: this is where we move from a logical model of the
current system to a logical model of the required system. This means
that here the DFDs and LDSs have to be refined to cater to new or
changed requirements.

3. Requirements Specification: The Requirements Specification consists
of a single stage which involves further developing the work carried out
in the Requirements Analysis: detailed functional and non-functional re-
quirements are identified and new techniques are introduced to define the
required processing and data structures.

3 METHODOLOGIES 9

4. Logical System Specification:

• Technical system options—In this stage up to six technical op-
tions (specifying the development and implementation environments)
are produced, one being selected.

• Logical design—In this stage the logical design of update and en-
quiry processing and system dialogues (menus etc.) is carried out.

5. Physical Design: The Physical Design consists of a single stage in which
the logical system specification and technical system specification are used
to create a physical database design and a set of program specifications.

SSADM revolves around the use of three key techniques:

1. Logical Data Modelling (LDM): This is the process of identifying,
modelling and documenting the data requirements of a business informa-
tion system. A LDM consists of a LDS and the associated documentation.
LDSs represent Entities (things about which a business needs to record
information) and Relationships (necessary associations between entities).

2. Data Flow Modelling (DFM): This is the process of identifying, mod-
elling and documenting how data flows around a business information sys-
tem. A Data Flow Model consists of a set of integrated DFDs supported by
appropriate documentation. DFDs represent processes (activities which
transform data from one form to another), data stores (holding areas for
data), external entities (things which send data into a system or receive
data from a system and finally data flows (routes by which data can flow).

3. Entity/Event Modelling (EM): This is the process of identifying, mod-
elling and documenting the business events which affect each entity and
the sequence in which these events occur. An EM consists of a set of En-
tity Life Historys (ELHs) (one for each entity) and appropriate supporting
documentation.

Application area

SSADM was originally developed to standardize the many and varied IT projects
being developed across government departments. Today, SSADM Version 4, can
be used in all kinds of analysis and design stages of system development.

SSADM can be used for practically any size of project: small (1–2 persons, less
than one man year), medium (4–10 persons, 1–20 man years) and large projects.
Furthermore SSADM can be used to develop new projects, but it can also be
used to maintain existing systems. [SSADM-WEB]

Advantages

• As mentioned before SSADM is an open standard, which means that it
is freely available for use in industry and many companies offer support,
training and CASE tools for it.

3 METHODOLOGIES 10

• SSADM divides an application development project into modules, stages,
steps, and tasks, and provides a framework for describing projects in a
fashion suited to managing the project.

• SSADM’s objectives are to:

– Improve project management and control

– Make more effective use of experienced and inexperienced develop-
ment staff

– Develop better quality systems

– Make projects resilient to the loss of staff

– Enable projects to be supported by computer based tools such as
computer aided software engineering systems

– Establish a framework for good communications between participants
in a project

• SSADM can reduce the chances of initial requirements being misunder-
stood and of the systems functionality straying from the requirements
through the use of inadequate analysis and design techniques.

Disadvantages

• SSADM is a typical example of a structured methodology, which means
that the purpose of it is to:

– Formalize the requirements elicitation process to reduce the chances
of misunderstanding the requirements.

– Introduce best practice techniques to the analysis and design process.

• As mentioned before SSADM can reduce the chances of initial require-
ments being misunderstood and of the systems functionality straying from
the requirements through the use of inadequate analysis and design tech-
niques. However, SSADM assumes that the requirements (in the form of
an agreed requirements specification) will not change during the develop-
ment of a project. Following each step of SSADM rigorously can be time
consuming and there may be a considerable delay between inception and
delivery (which is typically the first time the users see a working system).
The longer the development time the more chance of the system meeting
the requirements specification but not satisfying the business requirements
at the time of delivery.

Coupling with other methodologies

SSADM covers those aspects of the life-cycle of a system from the feasibility
study stage to the production of a physical design; it is generally used in con-
junction with other project management methods or techniques, which are con-
cerned with broader aspects of project management. So almost every method
or project technique discussed in this document can be used in combination
with SSADM, but because both methods are developed in the UK, very often
PRINCE is used (see Section 3.3). [SSADM-WI]

3 METHODOLOGIES 11

Figure 3: PRINCE2—Process Model [PRIN2-OFF]

3.3 PRINCE2

Projects in Controlled Environments (PRINCE) is a project management method-
ology covering the organization, management and control of projects. A project
has a clear beginning, middle and end, a clear organizational structure and de-
fined objectives. You can use a managing methodology like PRINCE to ensure
that a project is successful, which means that it finishes on time, within budget
and provides the customer with what they have asked for.

PRINCE was first developed by the CCTA, which is now part of the Office of
Government Commerce (OGC), in 1989 as a UK Government standard for IT
project management.

Since its introduction, PRINCE has become widely used in both the public and
private sectors and is now the de facto standard for project management in the
UK. Although PRINCE was originally developed for the needs of IT projects,
the methodology has also been used on many non-IT projects. The latest version
of the methodology, PRINCE2, is designed to incorporate the requirements of
existing users and to enhance the methodology towards a generic, best practice
approach for the management of all types of projects.

PRINCE2 is a process-based approach for project management providing an
easily tailored and scalable methodology for the management of all types of
projects. Each process is defined with its key inputs and outputs together with
the specific objectives to be achieved and activities to be carried out. The
methodology describes how a project is divided into manageable stages en-
abling efficient control of resources and regular progress monitoring throughout
the project. The various roles and responsibilities for managing a project are
fully described and are adaptable to suit the size and complexity of the project,
and the skills of the organization.[PRIN2-OFF]

PRINCE2 outlines eight processes that are required to successfully carry out a
project (also see the process model in Figure 3). These are [PRIN2-WEB]:

3 METHODOLOGIES 12

1. Starting up a Project: To make sure that the project has a very clear
beginning, this process occurs even before the project has actually started.
All decision making persons have to come together and will appoint a
Project Manager. Together they will discuss the project and outline rea-
sons for it and how decide how the project is to be carried out. All this
information will be put together in a ‘Project Brief’.

2. Initiating a Project: Before a project can be approved during the ‘Di-
recting a Project’ process it must be carefully planned to ensure that it
meets its objectives. Detailed estimations of costs, needed time and other
resources have to be made and these are put together by the Project Man-
ager into a so called Project Initiation Document (PID) for approval by
the Project Board (PB).

3. Directing a Project: After the Project Brief and the PID have been put
together, the project has to be approved by a group of senior managers,
called the Project Board (PB). During the rest of the project this PB has
the overall responsibility for the success of the project whereas the Project
Manager has the day to day responsibility. He will inform the PB about
the project’s progress with the help of regular reports.

4. Controlling a Stage: One of the advantages of PRINCE2 is that projects
are divided into manageable stages to ensure the project remains manage-
able and controlled. How many stages are used, will depend on the size
of the project and the level of risk. In PRINCE2 each project stage must
be completed before the next stage can be started and each new stage is
planned in the stage proceeding it. Also the Stage Plans will be approved
by the PB to help ensure that the project remains within budget and
delivers its objectives.

5. Managing Stage Boundaries: This process involves preparing for the
next stage and reviewing the current stage. The Project Manager makes
suggestions to the PB about the likelihood of the project achieving its
business objectives and any changes in the business case, project plan,
risks and issues. When a project has clear stage boundaries it can be
easily controlled and managed by permitting the project to continue only
once the PB is satisfied with the current stage end and next stage plan.

6. Planning: Each project plan, stage plan and team plan must consider key
planning aspects. These include what products to produce, the activities
required to produce these products, estimated resources (including costs
and time), scheduling the activities and analyzing risks. By following the
PRINCE2 planning process all these points are conducted in a sensible,
logical sequence. Ensuring consistency enables plans to be compared and
streamlines the planning process.

7. Managing Product Delivery: The goal of a PRINCE2 project is to
deliver products. A product can be a physical thing such as a poster or
it could be an intangible deliverable such as a service or sales agreement.
In fact everything produced in PRINCE2 (even a document) is called a
product. Often a Project Manager does not create the product. A third
party supplier and/or their colleagues may do some or all of the work. It is

3 METHODOLOGIES 13

the Project Manager’s responsibility to ensure that the supplier produces
the correct products at the right time by providing a description of the
work to be done.

8. Closing a Project: At the end of the project, after its products have been
delivered, the project is closed down with approval of the PB. The Project
Manager plans what will be done to evaluate the project’s outcome, which
is called the Post Project Review (PPR). A controlled close down is in
effect the last demonstrable PRINCE2 project action. Any lessons learned
are recorded, resources are released and the Post Project Review Plan
(PPRP) is created.

The key concepts that are fundamental to PRINCE2 are:

• Control: Being able to control your project is key to its success. For
this reason PRINCE2 breaks down projects into easily managed stages,
essentially breaking a large project into ‘bite size chunks’.

• Quality: To ensure that a product (or service) meets the customer’s
quality expectations these must be defined and agreed when a project is
being planned.

• Planning: In PRINCE2 planning does not end once the project has
started. Of the eight PRINCE2 processes all but one involve planning,
even the final process.

• Lesson Learned: Every time we carry out a project we learn some-
thing. All lessons, mistakes, ideas or successes are captured in the Lessons
Learned Log. At the end of the project these are collated into a Lessons
Learned Report, allowing others in the organization to benefit from them.

Application area

PRINCE2 is a project management methodology owned and maintained by the
OGC in the UK. It summarizes best practice from a variety of industries and
backgrounds. PRINCE2 has been adopted by the National Health Service as its
preferred methodology and a number of governments world wide are looking at
adopting it as their standard project management methodology. PRINCE2 is
one of the few government standards that has grown organically to be adopted
by both private and public organizations.

Some organizations that use PRINCE2 as a project management methodology
are the UK Police Forces, Rolls Royce, the British Medical Association, Nor-
wich Union, the UK Department of Justice and London Underground (see also
[PRIN2-WEB]).

Advantages

Besides the key concepts of PRINCE2 mentioned in Section 3.3, there are some
other advantages of the use of PRINCE2:

3 METHODOLOGIES 14

• PRINCE2 is a structured methodology providing organizations with a
standard approach to the management of projects. The methodology em-
bodies proven and established best-practice in project management. It is
widely recognized and understood, and so provides a common language for
all participants in the project, also PRINCE2 is very useful for educative
use.

• PRINCE2 enables projects to have:

– A controlled and organized start, middle and end

– Regular reviews of progress against plan and against the Business
Case

– Flexible decision points

– Automatic management control of any deviations from the plan

– The involvement of management and stakeholders at the right time
and place during the project

– Good communication channels between the project, project manage-
ment, and the rest of the organization

• Because there are no chapters on test methods in the PRINCE2 hand-
book, the choice which test method you want to use, is absolutely without
restrictions. PRINCE2 gives you a free choice of test method, but does
ask attention for it when putting together the project quality plan, which
is part of the PID.

Disadvantages

• Every person who works on a PRINCE2 project should be quite familiar
with every aspect of PRINCE2 to know how to play the game. It often
happens that this is not the case, because it is very expensive to give
everyone involved a course to study PRINCE2.

• Using PRINCE2 means that a lot of documents and lists have to be writ-
ten, and because Project Managers only have to inform the PB about the
status of the project, when something goes wrong they can easily blame
others. It is also very easy to blame other project groups when something
goes wrong. This leads to the so called “cover your ass behavior”.

• Splitting up a PRINCE2 project often results in a lack of knowledge of
the project by responsible persons like the Project Manager. Also it’s not
useful to make use of expensive Project Managers when the only work
they have to do is to administrate and inform the PB.

Coupling with other methodologies

PRINCE2 is a very complete project management methodology and it covers
a project from the very beginning till the delivery of the final product. So
PRINCE2 does not need to be coupled to other methodologies or project tech-
niques to complete PRINCE2 itself, though often it is used as an addition to
meet with the weaknesses and incompleteness of SSADM.

3 METHODOLOGIES 15

3.4 eXtreme Programming (XP)

XP is a software engineering methodology that has been formulated in 1996 by
Kent Beck. It is explained in detail in [XP-BOOK]. XP has received fair media
attention, and is most renowned for its practices that are sometimes regarded
as controversial, such as pair programming and test-driven development. In
this document, we will not concern ourselves with these aspects of eXtreme
Programming, but instead we will focus on the management part.

Principles of XP

XP aims to reduce the risk involved in software development.

In particular, it aims to reduce the cost of delaying design decisions. In [XP-BOOK,
p. 11–14], Beck gives a treatment of the cost and revenues of design decisions
and feature implements (which he calls ‘options’), and he concludes that it is
more beneficial to delay options of which it is uncertain whether they will gen-
erate revenue (i.e. there is a certain amount of risk involved in implementing
the option).

Traditionally, the cost of making decisions about (and therefore changes to) a
software project would rise exponentially during the course of development. It
would therefore be costly to defer options, because implementing them later on
might be too costly, and possibly even cost more than the value of the option
would be.

XP reduces the cost of making modifications later on during development, and
thereby allows decisions that entail high risk to be deferred until a sound judge-
ment can be made on them. All practices of XP work together to achieve this
goal.

Planning

An XP project is made up of releases. The first release aims to produce an initial,
working version of the product. The subsequent releases add functionality to the
project, change behaviour and fix bugs. An XP project typically lasts the entire
lifetime of the application: the software is constantly tweaked and updated to
be as useful as possible. Of course, this approach is not required: the project
can be ended when the customer decides the product is ‘finished’. There is
typically one to three months time between releases. Each release is divided up
iterations. Usually, they are one to three weeks in length.

In an XP project, requirements are not fixed in advance. At the start of the
project, or whenever he can think of one, the customer writes down a desired
feature in a so–called user story, which clarifies the feature by means of a typical
‘use case’.

At the start of the project, a release plan is drawn up. First, all stories are
written by the customer. The development team then assigns a cost to each
story. This cost should be one, two or three ‘ideal programming weeks’ for a
single developer. If the cost is greater, the story should be split up. If the

3 METHODOLOGIES 16

cost is less, multiple stories should be merged together. The stories are then
divided over a number of releases. Release dates can then be calculated from
the stories assigned to each release, or the stories can be divided such that fixed
release dates will be met. For this, you will need to estimate how to convert
ideal programming weeks to calendar weeks. The first time, this will be hard
(and estimates might be off), but as the project progresses the estimates will
become better.

At the start of each iteration, the customer selects the stories from that release
that are of the greatest value to him, which will be implemented during the
iteration. The stories are then broken up into smaller units called tasks. Each
developer has the opportunity to assume responsibility for a number of tasks.
The tasks are then estimated, in ideal programming days, by the developer
that chose them (making sure no–one has too much or too little to do), and
implemented during the course of the iteration.

Experience from an iteration or a release, such as the ideal programming time
realized, can be taken into account to estimate better next release or iteration
planning.

Application area

From [XP-BOOK, p. XV]:

“XP is a lightweight methodology for small-to-medium-sized teams
developing software in the face of vague or rapidly changing require-
ments.”

XP is a good choice when requirements are unclear (which might occur when
because himself does not know exactly what he wants), or prone to change (
because of changing business situations, or as a result of external conditions).
Because in XP the development of a product is divided into many small cycles,
and each cycle is planned separately, changes to the planning can be made
constantly, quickly and easily.

Team size is an issue when implementing XP. XP is meant for small-to- medium-
sized teams. In practice, this means that teams should be maximum ten people.
A few more is probably okay, but twenty is too many ([XP-BOOK, p. 157]).

Advantages

• An XP project is very malleable. A usable product can be released very
quickly, at which point the business can already take advantage of the
product, and the product can and will be improved continually thereafter,
with feedback that stems from live use. Especially when the project is
exploratory for the customer as well, having feedback from live use and
adapting to changing minds, wishes and circumstances can be invaluable.

• Additionally, the process is very transparent. Progress, position and di-
rection of the project are very transparent, which will make management
happy as well.

3 METHODOLOGIES 17

Disadvantages

• The biggest roadblock to implementing XP in any given environment, will
usually be the customer. The ‘customer’, or a person that plays the role
of the customer, has to be an integral part of the development team. This
means that the customer will have to be available on-site at all times.
Sometimes, this is just not feasible, or the customer will refuse to assign
an employee to the development team full-time. In such cases, XP will
not be able to work properly, and should be abandoned.

Coupling with other methodologies

Beck is very liberal about adapting XP. He suggests experimenting with the
practices prescribed by XP, then keeping the ones that work, and adjusting or
even ditching the ones that don’t.

However, he goes on theorizing that the maximum benefit of XP can only be
achieved by putting all practices into effect. He calls this the 20–80 rule: if you
do 80% of the work, you will only see 20% of the benefit. You will need to use
all the practices to get all of the benefit.

This suggests that coupling XP with other methodologies will be detrimental
to its usefulness, or the coupling should be limited to adding practices to XP,
without removing any.

3.5 Scrum

From [SCRUM-WKP]:

“Scrum is an agile method for project management, in use since
at least 1990. It has been called a “hyper-productivity tool”, and
has been documented to drastically improve productivity in teams
previously paralyzed by heavier methodologies—quickly producing
results where there had been little or none.”

Scrum uses the following concepts:

• Sprint: A period of 30 days or less where a set of work will be performed
to create a deliverable

• Backlog: All work to be performed in the foreseeable future, both well
defined and requiring further definition.

• Sprint backlog: The work that should be done during the current sprint.

• Product backlog: The work that should be done for the whole product
as desired by the customer.

• Scrum: A daily meeting at which progress and impediments to progress
are reviewed.

3 METHODOLOGIES 18

Figure 4: The Scrum workflow [SCRUM-CC]

Scrum is an iterative, incremental process for developing a product. The differ-
ent iterations are shown in Figure 4.

Scrum works by first defining a backlog of things that need to be done; this
list is usually maintained by one person. Other interested parties can request
things to be put on a backlog. For each sprint a subset of the backlog is chosen
to be done. During the sprint the team will only work on the things that are in
the sprint’s backlog to keep people focused and creative.

Each day of a sprint there is a Scrum in which the team members respond to
the following questions:

• What did you do since the last Scrum meeting?

• Do you have any obstacles?

• What will you do before the next meeting?

The sprint is lead by the so called Scrum Master. It’s his job to remove all the
obstacles that the team has encountered as soon as possible. This ensures that
the team itself can stay focused on the task itself. A Scrum ensures that the
team as a whole stays in touch with all parts of the sprint. During a Scrum,
management and the customer may be present but only the Scrum Master and
the team members are allowed to talk. This is to be sure that the Scrum is
short and focus on the task at hand.

After each sprint there is usually a demonstration of what has been done. Before
the start of a new sprint a discussion with the team and management is held to
establish a new sprint backlog based on the result of the last sprint and changes
to the environment/requirements.

3 METHODOLOGIES 19

Scrum’s main focus points are on team empowerment and adaptability. During a
sprint a team itself is responsible for doing the given work. The only interaction
with management is to tell them what’s getting in their way and what needs
to be removed to improve productivity. Because after each sprint, the next
increment can be changed according to the accomplishments and the changes
in the environment, the project is very flexible and adaptable.

Application area

Theoratically Scrum can always be applied when a group of people should work
together to archive a common goal. It has even been used as a project manage-
ment approach, in a so called “Scrum of Scrums”. Of course to work properly
the teams should be small, but this can be solved by dividing projects into sub-
teams. In the ideal situation all team members should be at the same location
for optimal communications among the members. But when this is not the case
the Scrum meetings an be held as a teleconference.

Advantages

• During a Scrum sprint there are no disturbances from the outside; this
keeps the team focused and creative. Which is very good for the produc-
tivity.

• At the end of each sprint, what has been done and what should be done
in the next sprint can be evaluated. This keeps the process very flexible.

Disadvantages

Because a Scrum team should be responsible for itself during a sprint, it’s im-
portant that management doesn’t interfere with how the work is being done.
For this management needs to fully trust the team to do the right thing, which
could potentially be problematic.

Coupling with other methodologies

Scrum itself doesn’t tell how a product should be engineered; this is up to
the team. This allows Scrum to be coupled with various other methodologies.
Adapting a technique as eXtreme Programming (Section 3.4) for the engineering
part has been reported to be very successful. Because of this Scrum is sometimes
referred to as being a “candy wrapper and not the candy bar”.

Also combining Scrum with Crystal Clear (Section 3.6) can be interesting.

3.6 Crystal Clear

From [CC-BOOK, p. 307]:

3 METHODOLOGIES 20

“Crystal Clear is a highly optimized way to use a small, colocated
team, prioritizing for safety1 in delivering a satisfactory outcome,
efficiency in development, and habitability of the working conven-
tions.”

The Crystal Clear methodology2 is part of the Crystal family of methodologies,
where every methodology is characterized by a color (Clear, Yellow, Orange,
Red, Maroon, Blue, Violet). That color represents the number of people for
which the methodology is suited; Crystal Clear is the lightest color and is meant
for the smallest project groups, of two to eight people. Darker colors are for
larger groups—these will not be discussed here.

Crystal Clear has at its core seven properties that should be established for
every project that wishes to adhere to the methodology. While all of these are
desired, only the first three are mandatory; the other four will get the project
further into the safety zone. The seven properties are:

1. Frequent Delivery: When delivering working, tested code to the actual
software users once every few months (or more often, if possible), users
will be able to deliver feedback on implemented requirements, sponsors
will see progress and developers will get a morale boost.

2. Reflective Improvement: Taking time to let the team reflect on what
works and what doesn’t work for the project, and improving the things
that don’t work.

3. Osmotic Communication: Having the entire team so close together (if
possible in the same room, otherwise in adjacent rooms) that people don’t
have to go to a lot of trouble to raise or answer questions, but can do so
instantly, will make people work together naturally, inspect each others’
work and pick up relevant information as if by osmosis.

4. Personal Safety: If people feel safe to speak up without fear of reprisal,
they can give constructive criticism on other people’s work and admit their
own mistakes, leading to honesty and ultimately to trust.

5. Focus: If everybody has time to focus on their primary objectives for two
hours a day, for two consecutive days every week, without any distractions
that can make them lose their train of thought (like meetings or other
work), people will be more focused and work will be finished quicker.3

6. Easy Access to Expert Users: If expert users are available to the team,
they can answer questions and deliver feedback on quality and design
decisions.

1Although Cockburn in [CC-BOOK] often talks about the concept of project safety and
frequently states the importance of getting the project further into the safety zone, he never
explicitly defines this “safety zone” concept. Reading the book, it seems to be a bounded
space, where the further a project resides inside the bounds of this space, the more likely it is
to succeed.

2The principal creator of Crystal Clear is Alistair Cockburn; the methodology is most fully
described in his book Crystal Clear [CC-BOOK].

3Four hours of totally undistracted work a week might not seem much, but Cockburn
insists that this is more than we usually get.

3 METHODOLOGIES 21

7. Technical Environment with Automated Tests, Configuration
Management & Frequent Integration: A proper technical environ-
ment where testing and configuration management/version control tasks
(like making backups and merging changes) do not have to be done by
hand will make life easier for developers.

Crystal Clear offers several concrete procedures/techniques that can help es-
tablish these critical properties (see [CC-BOOK, Chapter 3]), but these are
optional: If the team knows of other ways to satisfy the properties, there
is nothing that stands in their way. In general, it can be said that Crystal
Clear values properties over techniques. This also makes Crystal Clear a low-
threshold methodology: project groups can carry over their established methods
and techniques—which the group has either grown into or were developed to fit
their specific situation—to Crystal Clear, and thus will not have to learn a set
of new ones before coming up to speed.

Application area

As explained above, Crystal Clear is meant for project groups consisting of two
to eight people working at the same physical location, with one or more expert
users available. In general, this means any setting where the first three (but
ideally, all seven) of the properties can be fulfilled are applicable.

However, the above does not have to be strictly adhered to. All methodologies
in the Crystal family support the stretch to fit principle, which states that when
a potential project does not fit within the target methodology, the principles
and practices to be carried out by the methodology can be stretched to fit the
particular case. For example, teams that are significantly larger than eight
people have carried out Crystal Clear successfully by stretching it to fit their
needs.

Advantages

• Because the seven properties are based upon behavior that has been ob-
served in successful project groups, those practising Crystal Clear might
well be on the right track to bringing the project to an end successfully.
While this is of course no guarantee of success—there are always other
factors that contribute to or detract from a project’s success—it is likely
that these properties contain at least some quality that does indeed make
the difference between a successful project and an unsuccessful one. In
fact, [CC-BOOK] cites numerous stories that demonstrate the success of
the properties and techniques provided as well as Crystal Clear in general.

• Unlike traditional, thick methodologies like SSADM or PRINCE, Crystal
Clear is flexible as to what project teams are supposed to do and how to
do it. This is expressed in the properties over techniques and stretch to fit

principles. In fact, Crystal Clear was explicitly designed to be usable by as
many project groups as possible, with the least number of new techniques
to learn. It differs in this respect even from a fellow agile methodology

3 METHODOLOGIES 22

like XP, which explicitly states what practices (techniques) to use, and so
narrows its potential users to those who can fulfill adhering to all of those
practices.

Disadvantages

• One of Crystal Clear’s major strengths is also its principal disadvantage:
It tries to be a methodology that is applicable in as many cases as possi-
ble. This clearly prevents it from ever being a “best” methodology (like
XP strives to be) in any specific case, as Cockburn earnestly admits in
[CC-PPP]:

“Go right ahead and stick with XP. [. . .] Clear is for the ma-
jority. Anyone who can step up to XP can benefit from doing
so.”

• Another disadvantage might be that Crystal Clear is still relatively new:
the only book written on the subject is not yet published, so it may not
have a lot of real-world usage yet. On the other hand, the principles
behind the methodology are all based on real experiences drawn from real
projects, so perhaps wider exposure will reveal that Crystal Clear indeed
works “as advertised”.

Coupling with other methodologies

Because Crystal Clear is such a lightweight methodology, it can be coupled
with several other methodologies to reap the benefits of both. This can be done
in one of two ways: either by adding one or more techniques from the other
methodology to Crystal Clear, or by merging both methodologies to practice
them at the same time. As might be expected, the first is easier to attain than
the second.

The coupling with some other methodologies described in this essay is illustrated
below.

• Crystal Clear can be coupled with XP (Section 3.4). As explained in
[CC-BOOK, p. 251], any of XP’s practices can be added to Crystal Clear;
adding regular delivery and reminding and informing documentation to
XP’s planning game will realize a full merger of the two. See [CC-PPP]
and [CC-WIKI1] for a further comparison of Crystal Clear and XP.

• Crystal Clear can also be coupled with Scrum (Section 3.5). According
to [CC-BOOK, p. 251], this produces a No-Process process, where you
can “start anywhere, work in short cycles with high communication and
reflective feedback, and eventually you will end up with what you need.”

• Crystal Clear could possibly even be coupled with a thick methodology
like RUP (Section 3.1). It would be difficult, because Crystal Clear is (as
explained earlier) stretch to fit, while RUP could be described as shrink

to fit; even if it would be possible to make them cooperate, it would still
be of questionable usefulness. See [CC-BOOK, p. 254] and an interesting
discussion on [CC-WIKI2].

4 PROJECT TECHNIQUES 23

4 Project techniques

This section discusses a number of project management techniques. These tech-
niques can be used as an aid to estimate, track and evaluate different aspects
of the project.

We start with a discussion of PMBOK, which is actually not a technique in
itself, but rather a collection of industry-standard techniques. After that, we
discuss COCOMO, MTA, EV and Critical Path.

4.1 Project Management Body of Knowledge (PMBOK)

The Project Management Body of Knowledge is an inclusive term that describes
the sum of knowledge within the profession of Project Management (PM). As
with other professions such as law, medicine, and accounting, the body of knowl-
edge rests with the practitioners and academics that apply and advance it. The
full Project Management Body of Knowledge (PMBOK) includes knowledge of
proven traditional practices that are widely applied, as well as knowledge of in-
novative and advanced practices that have seen more limited use, and includes
both published and unpublished material [PMBOK-PMI].

The PMBOK framework splits the project processes into five distinct process
groups: initiating, planning, executing, controlling and closing. Note that these
groups do not imply that the project has to go through each one in this or-
der; they are only provided in order to be able to structure and categorize the
different project processes.

PMBOK also identifies several project knowledge areas: integration manage-
ment, scope management, time management, cost management, quality manage-
ment, human resource management, communications management, risk man-
agement and procurement management.

By using this twin categorization in process groups and knowledge areas, we
can classify project processes, obtaining the table in Figure 4.1.

The PMBOK Guide includes summaries of generally accepted techniques and
methodologies that can be used to implement these project processes. Note that
these techniques and methodologies need not be, and mainly are not courtesy
of PMBOK. Generally accepted means being applicable to most projects most
of the time and having widespread consensus about their value of usefulness.

Please refer to the guide itself for more in-depth information about the generally
accepted techniques and methodologies [PMBOK-PMI].

Application area

PMBOK tries to reflect the growth of knowledge and practices in the field of
project management by capturing those practices, tools, techniques and other
relevant items that have become generally accepted.

Generally accepted does not mean that the knowledge and practices described
in the PMBOK framework are or should be applied uniformly on all projects;

4
P

R
O

J
E

C
T

T
E

C
H

N
IQ

U
E

S
2
4

Knowledge Areas / Initiating Planning Executing Controlling Closing
Process Groups

Project Integration Project Plan Development Project Plan Integrated Change

Management Execution Control

Project Scope Initiation Scope Planning Scope Change Scope Verification

Mangament Scope Definition Control

Project Time Activity Definition Schedule Control

Management Activity Sequencing

Activity Duration Estimating

Schedule Development

Project Cost Resource Planning Cost Control

Management Cost Estimating

Cost Budgeting

Project Quality Quality Planning Quality Assurance Quality Control

Management

Project Human Organization Planning Team Development

Resource Management Staff Acquisition

Project Communications Communications Planning Information Performance Administrative

Management Distribution Reporting Closure

Risk Project Risk Management Planning Risk Monitoring

Management Risk Identification and Control

Qualitative Risk Analysis

Quantitative Risk Analysis

Risk Response Planning

Project Procurement Procurement Planning Solicitation Contract

Management Solicitation Planning Source Selection Closeout

Contract Administration

Table 1: Mapping of Project Management Processes to Process Groups and Knowledge Areas. [PMBOK-PMI].

4 PROJECT TECHNIQUES 25

the project management team is always responsible for determining what is
appropriate for any given project [PMBOK-PMI].

A few well-known techniques included in the PMBOK framework are Earned
Value (EV) management (see also Section 4.4), Program Evaluation and Re-
view Technique (PERT) [PMBOK-PERT] and Critical Path Method (CPM)
(Section 4.5).

Advantages

• PMBOK provides a general project management framework in the form
of process groups and knowledge areas.

• PMBOK gives a concise summary of and reference to generally accepted
project management principles.

• PMBOK proposes a unified project management terminology.

Disadvantages

• PMBOK is only a framework; the actual needs of the project in question
should be determined by a knowledgeable managerial team.

• PMBOK provides minimal coverage of various project management method-
ologies and techniques. One definitely needs to consult specialized texts
on these subjects in order to learn the ins and outs.

• PMBOK only covers those aspects of the project management process
that are profession independent.

Usage in methodologies

Since PMBOK really is a collection of generally accepted project management
techniques, these techniques can easily be integrated in other methodologies
when applicable.

4.2 Constructive Cost Model (COCOMO)

COCOMO is an empirical, algorithmic model for estimating the effort, schedule
and costs of a software project. It was derived by collecting relevant data from
a large number of software projects, then analyzing the data to discover the
formulae that were the best-fit to the observations [CCM-SWENG, p. 522].

The first version of the COCOMO model (now known as COCOMO 81) was
a three-level model where the levels reflected the detail of the analysis of the
cost estimate. The first level (basic) provided an initial, rough estimate; the
second level modified this using a number of project and process multipliers and
the most detailed level produced estimates for different phases of the project
[CCM-SWENG, p. 523].

4 PROJECT TECHNIQUES 26

COCOMO 81 makes various assumptions about the software development pro-
cess in order to produce its estimates. The latter will only be somewhat accurate
when the project uses the waterfall process model and every line of code is pro-
duced from scratch. It also fails to take into account that nowadays higher-level
programming languages are employed, supported by various automated tools.
We will not elaborate on this version, since it has been obsoleted by COCOMO 2.

COCOMO 2 includes support for various development methodologies such as
component-based development and prototyping, fourth generation programming
languages and CASE support tools. COCOMO 2 still consists of three levels,
but these have been given slightly different interpretations:

• The early prototyping level: Size estimates are based on object points.
These object points are a simple way of quantifying the perceived complex-
ity of requirements that need to be implemented. The required effort is
then computed by applying a simple extrapolation from the object points
and programmer productivity. Object points are based on the number of
screens, reports and modules in third generation programming languages,
and can be weighed by the perceived complexity of the screen, report or
module in question.

• The early design level: This level corresponds to the completion of the
system requirements with (perhaps) some initial design. Estimates are
based on function points, which are obtained by working out the object
points in detail. More specifically, the total number of points is computed
by measuring or estimating the following program features: external in-
puts and outputs, user interactions, external interfaces and files used by
the system. The function points are then converted to number of lines of
source code using the tables provided by the COCOMO model.

• The post-architecture level: Once the system architecture has been
designed a reasonably accurate estimate of the software size can be made.
The estimate as this level uses a more extensive set of multipliers reflecting
personnel capabilities, product and project characteristics [CCM-SWENG,
p. 523–524].

For more specific information about the COCOMO 2 model, please refer to
[CCM-BOEHM].

Application area

COCOMO is a well-known empirical algorithmic cost estimation technique. It
is well-documented, in the public domain and is supported by public domain
and commercial tools. It has been widely used and has a long pedigree from its
first instantiation in 1981 [CCM-SWENG, p. 522–523].

The application of the first instantiation of the model was limited due to the
rather large constraints on the development process. This issue has been miti-
gated by continued improvements on, and extensions of the model, resulting in
COCOMO 2. A refinement of the model for the Ada programming language is
available as well.

4 PROJECT TECHNIQUES 27

Advantages

• Although it’s hard to pinpoint the exact cost of any given project, one can
still obtain usable data by calculating optimistic and pessimistic estimates.

• Implementation and execution of the model is very simple and efficient.
As a result, it is supported by public as well as commercial tools.

• COCOMO is a well-known and well-documented technique.

Disadvantages

• It is quite difficult to come up with satisfactory estimates for the size of a
project when the latter still in an early stage of development.

• The use of the number of lines of source code as a measure of complexity is
highly disputable. Even though COCOMO tries to take this into account
by providing different tables for all major programming languages, there
are still lots of inconsistencies such as: expressivity differences between
programmers, usage of subroutines, general code reuse, etcetera.

• Several input parameters in the model cannot by determined quantita-
tively; they need be estimated as well. A few examples: experience and
productivity of the programmers, maturity and capability of CASE tools.
The accuracy of the ultimate estimates of the COCOMO model depends
considerably on the exactness of the initial ones.

• The COCOMO model has not been revised since 1995. Therefore, it is
likely the model fails to take into account new theories and practices in
the Software Engineering field, resulting in worse estimates.

Usage in methodologies

As stated above, the COCOMO model can only be applied when the project
in question satisfies a given number of criteria. Additionally, it is advisable to
try out other estimation techniques, as to get a feeling of the accuracy of the
estimates that have been obtained. Other possible techniques include:

• Expert judgement

• Estimation by analogy

• Other algorithmic cost estimation models

Each of these techniques has advantages and disadvantages, and none is appro-
priate in all circumstances, since cost estimation of software engineering projects
is a very complex task due to the highly dynamic character of the profession.

4 PROJECT TECHNIQUES 28

Figure 5: MTA Chart [MTA-SAP]

Tools

Implementing the COCOMO model comes down to evaluating some simple
mathematical formulae wherein the variables should be chosen so as to match
the characteristics of the project under scrutiny as closely as possible.

As such, one can easily find implementations on the Internet by using a decent
search engine such as Google. An implementation by the CSE Center of Software
Engineering at USC can be found at [CCM-JAVA]. Other implementations are
[CCM-SCE+], [CCM-STAR] and [CCM-NASA].

4.3 Milestone Trend Analysis (MTA)

MTA is a software engineering technique for evaluating the actual progress of a
project in relation to its planning.

This relatively simple technique consists of recording the dates of the milestone
deadlines at the times they are changed, i.e. when they are postponed or ad-
vanced. This way one gets a matrix of data: the columns of the matrix delimit
the project milestones, the rows the dates on which the deadlines were reevalu-
ated, while an actual cell contains the new deadline estimate for the milestone
in question.

Of course, one can greatly enhance insight in these data by using some simple
visualization techniques. This can be done by plotting the estimated deadlines
against the dates on which they were evaluated. The latter are usually placed
on the X-axis, the former on the Y-axis. The evolution of a project milestone
deadline is thus visible as a curve on the graph: downward movement of the
curve signifies that the deadline in question was advanced, while upward move-
ment means postponement. One can also easily spot milestone completion: this
is the case when the curve intersects the line y = x. The general shape of the
graph is often roughly triangular: this is the result of the fact that we stop
plotting a curve when the milestone in question has reached completion, i.e.
when it intersects with the angular bisector of the first quadrant.

An example of a typical MTA chart can be seen in figure 5.

4 PROJECT TECHNIQUES 29

Application area

MTA can be applied to every project that uses milestones as the major indicators
of progress. It is in essence a very simple and elegant technique that can easily
be applied to assess progress.

Of course, MTA is an evaluation technique that is to be employed during the
execution of a project. Its major uses are preventing and correcting schedule
slippage, and post-mortem schedule evaluation.

Advantages

• MTA is a simple, elegant and effective technique.

• MTA is widely used and supported.

• MTA has a large application area.

Disadvantages

• MTA in itself does not keep track of inter-package dependencies. There-
fore, when a certain milestone completion date is altered, one needs to
make sure its dependencies are altered as well. This does not prove to be
much of a problem in practice however, since MTA is available as a plugin
for more comprehensive project management tools that can keep track of
dependencies.

• The inputs of the MTA technique are of course estimates of milestone
completion deadlines. As such, it is imperative these estimates are made
by knowledgeable and experienced engineers. MTA will not be of much
use if these estimates are not reasonably accurate.

Usage in methodologies

As stated above, the only prerequisite is that the project under scrutiny uses
milestones. MTA does not impose any further restrictions on the process model
and can help to clarify progress assessment in almost any project.

Tools

An MTA plugin for the well-known Microsoft Project management tool is avail-
able at [MTA-PROIT].

Dr. Dipp, a distributed tool supporting time-registration and schedule evalua-
tion of software engineering projects, provides an MTA feature as well [DRDIPP].

4 PROJECT TECHNIQUES 30

4.4 Earned Value (EV) management

In earned value management the progress of a project is estimated by comparing
what already has been done with the estimates that were made at the beginning
of a project. By extrapolating these measurements, a project manager can judge
how much resources will be used at the end of a project.

Some common acronyms that are used use in the EV management:

BCWS Budgeted Cost for Work Scheduled

BCWP Budgeted Cost for Work Performed

ACWP Actual Cost of Work Performed

BAC Budget At Completion

EAC Estimate At Completion

Budgeted Cost for Work Performed (BCWP) is also known as the earned value.
This value shows what a project really has earned at a certain point in time.
The cost of an amount of work can be expressed in different ways. For example
in dollars or in hours.

Furthermore one has to choose when something has been earned. It can be
chosen to only set something to be earned when the full task is done. Or say
that the part of the task that already had been done has been earned. In the
last case the problem is that estimating how far a task has progressed is difficult.
In the first case the problem is that work on a task will skew the figures a little
until the task has been done. For example when 95% of the work has been done
the earned value of that task is still zero, while their is a significant amount of
spent value on it.

EV indicators

• Cost Variance: CV = BCWP − ACWP

This shows the difference between the budgeted cost for a certain amount
of work (BCWP) and the real cost of an amount of work (ACWP). A
negative number indicates that the cost has been underestimated, while a
positive number indicates that the cost has been overestimated

• Schedule Variance: SV = BCWP − BCWS

This shows the difference between what has been earned at a certain and
what should have been earned.

• Budget Remaining: BR = BAC − ACWPCumulative

This shows the amount of budget that is still available to complete the
project.

4 PROJECT TECHNIQUES 31

• Work Remaining: BCWR = BAC − BCWPCumulative

This shows the amount that still has to be earned in this project, thus the
work that remains to be done.

• Variance at Completion: V AC = BAC − EAC

This shows the difference between the planned cost at the end and the
estimated cost at the end. A negative value indicates that the project is
costing more than planned and a positive value indicates that it’s costing
less.

• Cost Performance Index (Efficiency): CPIe = BCWP/ACWP

This shows how efficient the project is being done in terms of cost. For
example a value of 2 shows that the project is currently costing half of the
amount planned. Or in other words it’s being done twice as efficiently as
estimated.

• Schedule Performance Index (Efficiency): SPIe = BCWP/BCWS

This shows how efficient the project is being done in terms of time. For
example a value of 2 shows that the project is going twice as fast as
estimated.

• Estimate At Completion: EAC = BAC/CPIe

This gives a prediction what the cost will at the end of the project. The
equivalent but longer version EAC = ACWP +(BAC−BCWP)/CPIe is
often used in the literature. It’s important to note that CPIe is a moving
target and changes during the course of the project. Instead of using the
CPIe of the whole project, the CPIe of for example the last three months
can be used. This takes the current performance of the project better into
account. Of course choosing shorter timespans for the CPIe will increase
the influence of short periods of peak performance.

Advantages

During a project a manager can judge if the projects is on schedule/budget. If
that’s not the case an estimate can be made how far the project is over budget.

Disadvantages

It’s very difficult to estimate the real Earned Value at a certain point in time.
Wrong estimates of this value can make a project look like it’s doing a lot better
then it really is (or the other way around).

4 PROJECT TECHNIQUES 32

Figure 6: An example of a project network

Usage in methodologies

EV management can be used to monitor projects where there is planning be-
forehand when certain goals should be reached. This encompasses most thick
methods. Examples include PRINCE2 (section 3.3 and SSADM (section 3.2).

Tools

wInsight is a tool for earned value management that intergrates with a wide
range of project management tools. For more information see [EV-WINSIGHT].

Just like for MTA Dr. Dipp[DRDIPP] also provides a possiblity to display the
projects status in an EV chart.

4.5 Critical path

The critical path technique operates on a directed acyclic graph that sequentially
orders all tasks that need to be completed in the project. We term this graph
the project network. An example of a project network can be seen in Figure 6.
The tasks connected in a project network are typically the terminal elements of
a Work Breakdown Structure.

The graph specifies the order in which the different tasks need to be completed,
and the dependencies between them. Each task has an associated cost in time.
The critical path is the longest path from the start of the project to the finish,
and its cost is the shortest period in which the project can be completed. Any
delay on tasks on the critical path will delay the entire project. In our example,
the critical path is (s, b, d, t), with a cost of 60 days.

A related concept is slack; this is the time that a single activity can be delayed,
without delaying the project. By definition, the slack of all activities on the
critical path is 0.

Application area

Critical Path can be used for task scheduling in just about any project man-
agement scheme. However, the grade of dependencies between the tasks must

4 PROJECT TECHNIQUES 33

be high enough to make critical path calculation useful. Calculating the critical
path for all the deliverables in a (linear) waterfall methodology just won’t be
all that surprising.

Advantages

Critical Path analysis is very clear and unambiguous. It can be used to iden-
tify the most important activities, and make sure extra care is given to them.
Furthermore, for activities that are not on the critical path, the slack can be
calculated and taken into account.

Disadvantages

Critical path was designed for routine activities, which can be estimated easily
and correctly. Uncertainty about the duration of a task cannot be expressed in
the critical path model, and reality can therefore sometimes deviate from the
model’s predictions.

Usage in methodologies

For Critical Path scheduling to be effective, tasks must be known early in ad-
vance, and for analysis to be useful, the tasks must have visible dependencies.
This makes it unsuitable for methodologies like XP, where activities are small,
scheduled only shortly in advance, and tasks have few to no depedencies upon
each other.

Tools

Critical Path analysis is a basic project management technique that is widely
supported by a variety of project management applications. A very well–
known one is Microsoft Project [CP-MSPROJ]. Another tool that can do
Critical Path analysis is PlanBee [CP-PLANBEE]. Another one is Open Plan
[CP-OPENPL]. These are all commercial applications. A Free Software ap-
plication that supports Critical Path Analysis is for example Manage-XPS
[CP-MAN-XPS]. There are undoubtedly many more.

5 CONCLUSION 34

5 Conclusion

In this document we have concisely reviewed a selection of well-known project
management methodologies and techniques. Perhaps the most telling observa-
tion we can make in retrospect is that software project management remains a
highly unpredictable discipline despite the considerable number of management
tools that are available at the moment.

A plausible cause of this unpredictable behaviour is the fact that software de-
velopment is a relatively young field when compared to other established en-
gineering disciplines. Even though a lot of valuable knowledge about software
engineering has already been collected, we’re really experiencing the baby steps
of an emerging field.

One can ask oneself the question whether software engineering will ever become
a highly predictable activity due to the unusual complexity of its core activities,
which are highly non-tangible, contrary to those of other engineering disciplines.

We believe that, even though highly structured management methodologies such
as RUP can still be valuable for large, static software projects, the future of
software engineering lies in the use of highly agile and interactive development
methods such as Extreme Programming. Current developments such as open-
source development seem to assert themselves as powerful tools in the battle
against complexity. However, always keep in mind there is No Silver Bullet.

References

[CC-BOOK] Alistair Cockburn — Crystal Clear
(due out September 2004, June 2004 draft available from
http://alistair.cockburn.us/crystal/books/

alistairsbooks.html)

[CC-PPP] The Portland Pattern Repository Wiki — Crystal Clear
Methodology
http://c2.com/cgi-bin/wiki?

CrystalClearMethodology

[CC-WIKI1] Crystal Wiki — Crystal versus XP
http://alistair.cockburn.us/crystal/wiki/

FaqCrystalVsXp

[CC-WIKI2] Crystal Wiki — Crystal versus RUP
http://alistair.cockburn.us/crystal/wiki/

FaqCrystalVsRup

[CCM-BOEHM] B. Boehm, B. Clark, et al. — Cost models for future life
cycle processes: COCOMO
Annals of Software engineering, 1995

[CCM-JAVA] E. Horowitz, et al. — COCOMO 2 Implentation in Java
http://sunset.usc.edu/research/COCOMOII/

REFERENCES 35

[CCM-SWENG] I. Somerville — Software Engineering
Addison Wesley, 2001

[CCM-SCE+] SchemeQuest — SCEPlus Excel plugin
http://www.schemequest.com/

[CCM-STAR] SoftStar — CoStar COCOMO II Implementation
http://www.softstarsystems.com/overview.htm

[CCM-NASA] NASA — Online COCOMO implementation
http://www.jsc.nasa.gov/bu2/COCOMO.html

[CP-PLANBEE] PlanBee Critical Path Analysis
http://www.guysoftware.com/planbee.htm

[CP-MAN-XPS] Manage-XPS — Critical Path Analysis
http://industrialonline.net/manage_xps.htm

[CP-MSPROJ] Microsoft Project — Critical Path Analysis
http://office.microsoft.com/en-us/assistance/

HP010404341033.aspx

[CP-OPENPL] Open Plan — Critical Path Analysis
http://www.welcom.com/content.cfm?page=22

[DRDIPP] Software Engineering Project 2003/2004 group E —
Dr. Dipp
Technische Universiteit Eindhoven, 2004

[EV-DOD] DoD — Earned Value Management Web site
http://www.acq.osd.mil/pm/

[EV-NASA] NASA — Earned Value Management
http://evm.nasa.gov/

[EV-WKP] Wikipedia — Earned value management
http://en.wikipedia.org/wiki/Earned_value_

management

[EV-WINSIGHT] wInsight earned value management tools
http://www.winsight.com/products/?Product=

wInsight

[FOLDOC] Imperial College London — The Free On-Line Dictionary of
Computing
http://foldoc.doc.ic.ac.uk/foldoc/

[MTA-PROIT] Project IT GmbH — Project-MTA: Milestone Trend Anal-
ysis plugin for MS Project
http://www.project-report.com/

[MTA-SAP] SAP — Milestone Trend Analysis Chart
http://help.sap.com/

REFERENCES 36

[METH-WKP] Wikipedia — Methodology (Software engineering)
http://en.wikipedia.org/wiki/Methodology_

(software_engineering)

[PMBOK-PERT] NetMBA Business Knowledge Center — PERT
http://www.netmba.com/operations/project/pert/

[PMBOK-PMI] Project Management Institute — A Guide to the Project
Management Body of Knowledge
Project Management Institute, 2000

[PM-WKP] Wikipedia — List of project management topics
http://en.wikipedia.org/wiki/List_of_project_

management_topics

[PRIN2-COMP1] J.H.E. Roos — Computable Discussie: 14/05/04 - Basis
Prince II aangetast
http://www.computable.nl/artikels/archief4/

d20rr4bo.htm

[PRIN2-COMP2] Jos Keetels — Computable Discussie: 24/10/03 - ‘Prince II
is totaal ongeschikt’
http://www.computable.nl/artikels/archief3/

d43rr3ep.htm

[PRIN2-OFF] The Official PRINCE2 website
http://www.ogc.gov.uk/prince/

[PRIN2-WEB] Fiona Spence — What is PRINCE2?
http://www.crazycolour.com/p2/0009.shtml

[RUP-BOOK] Philippe Kruchten — The Rational Unified Process
Third Edition, 2004

[RUP-PDF] Philippe Kruchten — What Is the Rational Unified Process?
http://www-106.ibm.com/developerworks/

rational/library/content/RationalEdge/jan01/

WhatIstheRationalUnifiedProcessJan01.pdf

[RUP-TRANS] Per Kroll — Transitioning from waterfall to iterative
development
http://www-106.ibm.com/developerworks/rational/

library/4243.html

[RUP-WEB] The IBM home page of the Rational Unified Process
http://www-306.ibm.com/software/awdtools/rup/

[RUP-IMG] Karl Scharbert — Business Analysis als Bestandteil eines
Prozess-Modells bei IT-Projekten
http://www.karlscharbert.de/ba/

baBestandteilVorgehensmodell.html

[RUP-WKP] Wikipedia — The Rational Unified Process
http://en.wikipedia.org/wiki/RUP

REFERENCES 37

[SCRUM-WKP] Wikipedia — Scrum (in management)
http://en.wikipedia.org/wiki/Scrum_(in_

management)

[SCRUM-CC] Control Chaos, home of Scrum
http://www.controlchaos.com/

[SSADM-GUI] Malcolm Eva — SSADM Version 4 - A Users Guide
McGraw Hill

[SSADM-INTR] Introduction to Methodologies and SSADM
http://www.comp.glam.ac.uk/pages/staff/

tdhutchings/chapter4.html

[SSADM-MS] Model Systems: SSADM
http://www.modelsys.com/msssadm.htm

[SSADM-WEB] Mike Goodland / Karel Riha — SSADM - An Introduction
http://www.dcs.bbk.ac.uk/~steve/1/

[SSADM-WI] Structured Systems Analysis & Design Method - A whatis
definition
http://whatis.techtarget.com/definition/0,289893,

sid9_gci213458,00.html

[XP-BOOK] Kent Beck — Extreme Programming Explained: embrace
change
Addison Wesley, 1999

