
A Context-Free Process as a Pushdown
Automaton

J.C.M. Baeten, P.J.L. Cuijpers, and P.J.A. van Tilburg

Division of Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands,

{j.c.m.baeten,p.j.l.cuijpers,p.j.a.v.tilburg}@tue.nl

Abstract. A well-known theorem in automata theory states that every
context-free language is accepted by a pushdown automaton. We inves-
tigate this theorem in the setting of processes, using the rooted branch-
ing bisimulation and contrasimulation equivalences instead of language
equivalence. In process theory, different from automata theory, interac-
tion is explicit, so we realize a pushdown automaton as a regular process
communicating with a stack.

1 Introduction

Automata and formal language theory have a place in every undergraduate com-
puter science curriculum, as this provides students with a simple model of com-
putation, and an understanding of computability. This simple model of com-
putation does not include the notion of interaction, which is more and more
important at a time when computers are always connected.

Adding interaction to automata theory leads to concurrency theory. The two
models of computation are strongly related, and have much in common. Still,
research into both models has progressed more or less independently. We are
embarked on a program that studies similarities and differences between the
two models, and that shows how concepts, notations, methods and techniques
developed in one of the fields can be beneficial in the other field.

This paper studies, in a concurrency theoretic setting, the relation between
the notion of a context-free process [4,18,9], and that of a pushdown automaton
(i.e. a regular process that interacts with a stack) [17]. In order to obtain a full
correspondence with automata theory, we extend the definition of context-free
processes of [9] with deadlock (0, as in [18]) and termination (1, studied here for
the first time). The goal of this paper, is to show how every context-free process
can be translated into a pushdown automaton. The main difference with the
work of [17], is that we do this while explicitly modeling the interaction between
the regular process and the stack in this automaton. As it turns out, the addition
of termination leads to additional expressivity of context-free processes, which in
turn leads to a case distinction in the translation. Finally, the results in [17], show
that the translation in the other direction is not always possible for context-free
processes without termination, but as 1 gives us additional expressivity, it might

2 J.C.M. Baeten et al.

hold in the new setting. However, as the translation in one direction is already
not trivial, we leave the other direction as future work.

This paper is structured as follows. We first introduce our definitions of reg-
ular and context-free processes, and the associated equational theory, in Sects. 2
and 3, respectively. Then, in Sect. 4, we give the general structure of our transla-
tion, and study the different cases mentioned before as instances of this structure.
We conclude the paper in Sect. 5, and give recommendations for future work.

2 Regular Processes

Before we introduce context-free processes, we first consider the notion of a
regular process and its relation to regular languages in automata theory. We start
with a definition of the notion of transition system from process theory. A finite
transition system can be thought of as a non-deterministic finite automaton. In
order to have a complete analogy, the transition systems we study have a subset
of states marked as final states.

Definition 1 (Transition system). A transition system M is a quintuple
(S,A,→, ↑, ↓) where:

1. S is a set of states,
2. A is an alphabet,
3. → ⊆ S ×A× S is the set of transitions or steps,
4. ↑ ∈ S is the initial state,
5. ↓ ⊆ S is a set of final states.

For (s, a, t) ∈ → we write s
a−→ t. For s ∈ ↓ we write s↓. A finite transition

system or non-deterministic finite automaton is a transition system of which the
sets S and A are finite.

In accordance with automata theory, where a regular language is a language
equivalence class of a non-deterministic finite automaton, we define a regular
process to be a bisimulation equivalence class [13] of a finite transition system.
Contrary to automata theory, it is well-known that not every regular process has
a deterministic finite transition system (i.e. a transition system for which the
relation → is functional). The set of deterministic regular processes is a proper
subset of the set of regular processes.

Next, consider the automata theoretic characterization of a regular language
by means of a right-linear grammar. In process theory, a grammar is called a
recursive specification: it is a set of recursive equations over a set of variables. A
right-linear grammar then coincides with a recursive specification over a finite
set of variables in the Minimal Algebra MA. (We use standard process algebra
notation as propagated by [2,5].)

A Context-Free Process as a Pushdown Automaton 3

Definition 2. The signature of Minimal Algebra MA is as follows:

1. There is a constant 0; this denotes inaction, a deadlock state; other names
are δ or stop.

2. There is a constant 1; this denotes termination, a final state; other names
are ε, skip or the empty process.

3. For each element of the alphabet A there is a unary operator a. called action
prefix; a term a.x will execute the elementary action a and then proceed as
x.

4. There is a binary operator + called alternative composition; a term x+y will
either execute x or execute y, a choice will be made between the alternatives.

The constants 0 and 1 are needed to denote transition systems with a single
state and no transitions. The constant 0 denotes a single state that is not a final
state, while 1 denotes a single state that is also a final state.

Definition 3. Let V be a set of variables. A recursive specification over V with
initial variable S ∈ V is a set of equations of the form X = tX , exactly one
for each X ∈ V, where each right-hand side tX is a term over some signature,
possibly containing elements of V. A recursive specification is called finite, if V
is finite.

We find that a finite recursive specification over MA can be seen as a right-
linear grammar. Now each finite transition system corresponds directly to a finite
recursive specification over MA, using a variable for every state. To go from a
term over MA to a transition system, we use structural operational semantics [1],
with rules given in Table 2.1.

1↓ a.x
a−→ x

x
a−→ x′

x+ y
a−→ x′

y
a−→ y′

x+ y
a−→ y′

x↓
x+ y↓

y↓
x+ y↓

tX
a−→ x X = tX

X
a−→ x

tX↓ X = tX
X↓

Table 2.1: Operational rules for MA and recursion (a ∈ A, X ∈ V).

3 Context-Free Processes

Considering the automata theoretic notion of a context-free grammar, we find a
correspondence in process theory by taking a recursive specification over a finite
set of variables, and over the Sequential Algebra SA, which is MA extended with

4 J.C.M. Baeten et al.

x
a−→ x′

x · y a−→ x′ · y
x↓ y

a−→ y′

x · y a−→ y′
x↓ y↓
x · y↓

Table 3.1: Operational rules for sequential composition (a ∈ A).

sequential composition · . We extend the operational rules of Table 2.1 with
rules for sequential composition, in Table 3.1.

Now consider the following specification

S = 1 + S · a.1.

Our first observation is that, by means of the operational rules, we derive an
infinite transition system, which moreover is infinitely branching. All the states
of this transition system are different in bisimulation semantics, and so this
is in fact an infinitely branching process. Our second observation is that this
recursive specification has infinitely many different (non-bisimilar) solutions in
the transition system model, since adding any non-terminating branch to the
initial node will also give a solution. This is because the equation is unguarded,
the right-hand side contains a variable that is not in the scope of an action-prefix
operator, and also cannot be brought into such a form. So, if there are multiple
solutions to a recursive specification, we have multiple processes that correspond
to this specification. This is an undesired property.

These two observations are the reason to restrict to guarded recursive specifi-
cations only. It is well-known that a guarded recursive specification has a unique
solution in the transition system model (see [7,6]). This restriction leads to the
following definition.

Definition 4. A context-free process is the bisimulation equivalence class of
the transition system generated by a finite guarded recursive specification over
Sequential Algebra SA.

In this paper, we use equational reasoning to manipulate recursive specifica-
tions. The equational theory of SA is given in Table 3.2. Note that the axioms
x · (y + z) = x · y + x · z and x · 0 = 0 do not hold in bisimulation seman-
tics (in contrast to language equivalence). The given theory constitutes a sound
and ground-complete axiomatization of the model of transition systems modulo
bisimulation (see [6,5]). Furthermore, we often use the aforementioned principle,
that guarded recursive specifications have unique solutions [6].

Using the axioms, any guarded recursive specification can be brought into
Greibach normal form [4]:

X =
∑
i∈IX

ai.ξi (+ 1).

In this form, every right-hand side of every equation consists of a number of
summands, indexed by a finite set IX (the empty sum is 0), each of which is

A Context-Free Process as a Pushdown Automaton 5

x+ y = y + x
(x+ y) + z = x+ (y + z)
x+ x = x
(x+ y) · z = x · z + y · z
(x · y) · z = x · (y · z)

x+ 0 = x
0 · x = 0
1 · x = x
x · 1 = x
(a.x) · y = a.(x · y)

Table 3.2: Equational theory of SA (a ∈ A).

1, or of the form ai.ξi, where ξi is the sequential composition of a number of
variables (the empty sequence is 1). We define I as the multiset resulting of the
union of all index sets. For a recursive specification in Greibach normal form,
every state of the transition system is given by a sequence of variables. Note
that we can take the index sets associated with the variables to be disjoint, so
that we can define a function V : I → V that gives, for any index that occurs
somewhere in the specification, the variable of the equation in which it occurs.

As an example, we consider the important context-free process stack. Suppose
D is a finite data set, then we define the following actions in A, for each d ∈ D:

– ?d: push d onto the stack;
– !d: pop d from the stack.

Now the recursive specification is as follows:

S = 1 +
∑
d∈D

?d.S · !d.S.

In order to see that the above process indeed defines a stack, define processes
Sσ, denoting the stack with contents σ ∈ D∗, as follows: the first equation for
the empty stack, the second for any nonempty stack, with top d and tail σ:

Sε = S, Sdσ = S · !d.Sσ.

Then it is straightforward to derive the following equations:

Sε = 1 +
∑
d∈D

?d.Sd, Sdσ = !d.Sσ +
∑
e∈D

?e.Sedσ.

We obtain the following specification for the stack in Greibach normal form:

S = 1 +
∑
d∈D

?d.Td · S, Td = !d.1 +
∑
e∈D

?e.Te · Td.

Finally, we define the forgetful stack, which can forget a datum it has received
when popped, as follows:

S = 1 +
∑
d∈D

?d.S · (1 + !d.S).

Due to the presence of 1, a context-free process may have unbounded branch-
ing [8] that we need to mimic with our pushdown automaton. One possible

6 J.C.M. Baeten et al.

solution is to use forgetfulness of the stack to get this unbounded branching
in our pushdown automaton, as we will show in the next section. Note that
when using a more restrictive notion of context-free processes we have bounded
branching, and thus we don’t need the forgetfulness property.

The above presented specifications are still meaningful when D is an infinite
data set (see e.g. [15,14]), but does not represent a term in SA anymore. In
this paper, we use infinite summation in some intermediate results, but the
end results are finite. Note that the infinite sums also preserve the notion of
congruence we are working with.

Now, consider the notion of a pushdown automaton. A pushdown automaton
is just a finite automaton, but at every step it can push a number of elements
onto a stack, or it can pop the top of the stack, and take this information into
account in determining the next move. Thus, making the interaction explicit, a
pushdown automaton is a regular process communicating with a stack.

In order to model the interaction between the regular process and the stack,
we briefly introduce communication by synchronization. We introduce the Com-
munication Algebra CA, which extends MA and SA with the parallel composition
operator ‖. Parallel processes can execute actions independently (called inter-
leaving), or can synchronize by executing matching actions. In this paper, it is
sufficient to use a particular communication function, that will only synchronize
actions !d and ?d (for the same d ∈ D). The result of such a synchronization
is denoted ?!d. CA also contains the encapsulation operator ∂∗(), which blocks
actions !d and ?d, and the abstraction operator τ∗() which turns all ?!d actions
into the internal action τ . We show the operational rules in Table 3.3.

x
a−→ x′

x ‖ y a−→ x′ ‖ y
y

a−→ y′

x ‖ y a−→ x ‖ y′
x↓ y↓
x ‖ y↓

x
?d−→ x′ y

!d−→ y′

x ‖ y ?!d−→ x′ ‖ y′
x

!d−→ x′ y
?d−→ y′

x ‖ y ?!d−→ x′ ‖ y′

x
a−→ x′ a 6= !d, ?d

∂∗(x)
a−→ ∂∗(x

′)

x↓
∂∗(x)↓

x
?!d−→ x′

τ∗(x)
τ−→ τ∗(x

′)

x
a−→ x′ a 6= ?!d

τ∗(x)
a−→ τ∗(x

′)

x↓
τ∗(x)↓

Table 3.3: Operational rules for CA (a ∈ A).

Our finite axiomatization of transition systems of CA modulo rooted branch-
ing bisimulation uses the auxiliary operators T and | [7,16]. See Table 3.4
for the axioms and [5] for an explanation of these axioms.

A Context-Free Process as a Pushdown Automaton 7

x ‖ y = x T y + y T x+ x | y

0 T x = 0
1 T x = 0
a.x T y = a.(x ‖ y)
(x+ y) T z = x T z + y T z
0 | x = 0
(x+ y) | z = x | z + y | z
1 | 1 = 1
a.x | 1 = 0
!d.x | ?d.y = ?!d.(x ‖ y)
a.x | b.y = 0 if {a, b} 6= {!d, ?d}

∂∗(0) = 0
∂∗(1) = 1
∂∗(!d.x) = ∂∗(?d.x) = 0
∂∗(a.x) = a.∂∗(x) if a 6∈ {!d, ?d}
∂∗(x+ y) = ∂∗(x) + ∂∗(y)

a.(τ.(x+ y) + x) = a.(x+ y)

x | y = y | x
x ‖ 1 = x
1 | x+ 1 = 1
(x ‖ y) ‖ z = x ‖ (y ‖ z)
(x | y) | z = x | (y | z)
(x T y) T z = x T (y ‖ z)
(x | y) T z = x | (y T z)
x T τ.y = x T y
x | τ.y = 0

τ∗(0) = 0
τ∗(1) = 1
τ∗(?!d.x) = τ.τ∗(x)
τ∗(a.x) = a.τ∗(x) if a 6= ?!d
τ∗(x+ y) = τ∗(x) + τ∗(y)

Table 3.4: Equational theory of CA (a ∈ A ∪ {τ}).

The given equational theory is sound and ground-complete for the model
of transition systems modulo rooted branching bisimulation [13]. This is the
preferred model we use, but all our reasoning in the following takes place in the
equational theory, so is model-independent provided the models preserve validity
of the axioms and unique solutions for guarded recursive specifications.

4 Pushdown Automata

The main goal of this paper, is to prove that every context-free process is equal
to a regular process communicating with a stack. Thus, if P is any context-free
process, then we want to find a regular process Q such that

P = τ∗(∂∗(Q ‖ Sσ)),

where Sσ is a state of a stack process. Without loss of generality, we assume in
this section that P is given in Greibach normal form.

The first, intermediate, solution we present uses a potentially infinite data
type D. If D is infinite, then the stack is not a context-free process. Also, we
define Q in the syntax of Minimal Algebra, but it may have infinitely many
different variables, so it may not be a regular process. Later, we specialize to
cases where the data type is finite, and these problems do not occur. We do this
by reducing the main solution using several assumptions, that categorize the
possibilities for P into three classes: opaque, bounded branching, and unrestricted
specifications.

8 J.C.M. Baeten et al.

4.1 Intermediate Solution

The infinite data type D we use for our intermediate solution, consists of pairs.
The first element of the pair is a variable of P . The second element is a multiset
over I, i.e. a multiset over V , plus an indication of a termination option. So,
D = V × (I ∪ {1} → N).

For multisets A,B, we write A(a) = n if the element a occurs n times in
A, and we write A] B to denote union of multisets such that (A] B)(a) =
A(a) +B(a). We use the subscript c in a process term (p)c to denote that p only
occurs in the term if condition c holds. Finally, we call a variable transparent if
its equation has an 1-summand. We denote the set of transparent variables of P
with V+1.

Now, we prove the main theorem by first stating the specification of our
solution and introducing some formalisms, before giving the main proof. The
proof will provide insight in how and why our solution works.

Theorem 1. For every context-free process P there exists a process Q given by
a recursive specification over MA such that P = τ∗(∂∗(Q ‖ Sσ)) for some state
Sσ of the (partially) forgetful stack.

Proof. Let E be a finite recursive specification of P in Greibach normal form.
Now, let F be a recursive specification that contains the following equations for
every variable X ∈ V of the specification E, i ∈ IX and multiset A over I:

X̂(i, A) = Push(ξi, A),

with Push(ξ, A) recursively defined as

Push(1, A) = Ctrl(A),

Push(ξ′Y,A) =

(
!〈Y,A〉.Push(ξ′, IY) if Y 6∈ V+1,

!〈Y,A〉.Push(ξ′, IY]A) if Y ∈ V+1.

where Y is a variable at the end of the original sequence and ξ′ is the sequence
that is left over when Y has been removed. So, Push(ξ, A) is defined backwards
with respect to sequence ξ, necessary to preserve the correct structure on the
stack while pushing.

In addition, let F also contain the following equations of a partially forgetful
stack and a (regular) finite control.

S = 1 +
X

〈V,A〉∈D
V 6∈V+1

?〈V,A〉.S · !〈V,A〉.S +
X

〈V,A〉∈D
V ∈V+1

?〈V,A〉.S · (1 + !〈V,A〉.S),

Ctrl(A) =
X
i∈I

X
0<l≤A(i)

ai.Pop(i, l) (+ 1)A(1)≥1,

Pop(i, l) =

8>>>><>>>>:

X
〈V,A〉∈D
i∈IV

?〈V,A〉.V̂ (i, A) if V (i) 6∈ V+1,

X
〈V,A〉∈D

i∈IV ∧A(i)=l−1

?〈V,A〉.V̂ (i, A) if V (i) ∈ V+1,

A Context-Free Process as a Pushdown Automaton 9

The process Ctrl(A) allows for a choice to be made among the possible en-
abled actions ai, referred to by the indices in the multiset A. It can also terminate
if the termination option 1 is present in A. Once an action has been chosen, Ctrl
calls Pop with the index i of the action that was executed and the occurrence
l of the variable belonging to that index, V (i), on the stack that needs to be
popped. Once that variable, say V (i) = X, has been popped, X̂(i, A) is executed
to mimic the rest of the behavior when ai has been executed, namely pushing
ξi on the stack. Note that this means that A, the multiset of possible actions,
always has to correspond with the contents of the partially forgetful stack.

Before we show how the above specification mimics the specification of P , we
first study the structure of P itself more closely. In Greibach normal form, every
state in P is labeled with a sequential composition of variables Xξ (or in the
trivial case, 1). Substituting the Greibach normal form of the leading variable
X gives us the following:

Xξ =
(∑
i∈IX

ai.ξi (+ 1)
)
· ξ =

∑
i∈IX

ai.ξi · ξ (+ ξ).

Introducing a fresh variable P (ξ) for each possible sequence ξ, we obtain the
following equivalent infinite recursive specification.

P (1) = 1, P (Xξ) =
∑
i∈IX

ai.P (ξiξ) (+ P (ξ)).

Note that this specification is still guarded, as the unfolding of the unguarded
recursion will always terminate.

In order to link the sequences that make up the states of P to the contents
of the stack in our specification F , we use two functions h and e. The function
h determines, for a given sequence Xξ, the multiset that contains for each index
i ∈ I the number of occurrences of the process variable V (i) in a sequence that is
reachable through termination of preceding variables. It also determines whether
a termination is possible through the entire sequence.

h(1) = {1},

h(Xξ) =

{
IX if X 6∈ V+1,
IX] h(ξ) if X ∈ V+1.

The function e, defined by e(1) = 1 and e(Xξ) = 〈X,h(ξ)〉e(ξ), then represents
the actual contents of the stack.

Lemma 1. Let i ∈ I. Then h(Xξ)(i) = h(ξ)(i) iff i 6∈ IX .

Having characterized the relationship between states of P and the partially
forgetful stack of F , we define Q = Ctrl(h(X)), where X is the initial variable
of E, and we continue to prove P = τ∗(∂∗(Q ‖ Se(X))) =

[
Q ‖ Se(X)

]
∗.

1 More
precisely, we will prove for any sequence of variables ξ, that

P (ξ) =
[
Ctrl(h(ξ)) ‖ Se(ξ)

]
∗ .

1 From here on, [p]∗ is used as a shorthand notation for τ∗(∂∗(p)).

10 J.C.M. Baeten et al.

1. If ξ = 1, then P (1) =
[
Ctrl(h(1)) ‖ Se(1)

]
∗ = [1 ‖ S1]∗ = 1

2. If ξ = Xξ′, then there are two cases.

(a) Assume that X 6∈ V+1. First, apply the definition of h(Xξ′) and then
the definition of Ctrl(IX).

P (Xξ′)
?
=
ˆ
Ctrl(h(Xξ′)) ‖ Se(Xξ′)

˜
∗

=
ˆ
Ctrl(IX) ‖ Se(Xξ′)

˜
∗

=
X
i∈I

X
0<l≤IX (i)

ai.
ˆ
Pop(i, l) ‖ Se(Xξ′)

˜
∗ (+

ˆ
1 ‖ Se(Xξ′)

˜
∗)IX (1)≥1

Note that IX is a set, so it follows that IX(i) = 1 for i ∈ IX and IX(i) = 0
for all i ∈ I − IX . Therefore, the first two summations can be written as∑
i∈IX when we instantiate l = 1. Because it also follows that IX(1) = 0,

we remove the conditional summand
[
1 ‖ Se(Xξ′)

]
∗.

=
X
i∈IX

ai.
ˆ
Pop(i, 1) ‖ Se(Xξ′)

˜
∗

Unfold the definition of Se(Xξ′) once, then perform the pop by applying
the definitions of Pop(i, 1) and X̂(i, h(ξ′)).

=
X
i∈IX

ai.τ.
h
X̂(i, h(ξ′)) ‖ Se(ξ′)

i
∗

=
X
i∈IX

ai.τ.
ˆ
Push(ξi, h(ξ′)) ‖ Se(ξ′)

˜
∗

Finally, perform |ξi| pushes by repeatedly applying the definitions of
Push(ξ, A) and Se(ξ).

=
X
i∈IX

ai.τ
|ξi|+1.

ˆ
Ctrl(h(ξiξ

′)) ‖ Se(ξiξ′)
˜
∗

=
X
i∈IX

ai.
ˆ
Ctrl(h(ξiξ

′)) ‖ Se(ξiξ′)
˜
∗

=
X
i∈IX

ai.P (ξiξ
′).

(b) Assume that X ∈ V+1. First, substitute the definition of Ctrl(h(Xξ′)).

P (Xξ′)
?
=
ˆ
Ctrl(h(Xξ′)) ‖ Se(Xξ′)

˜
∗

=
X
i∈I

X
0<l≤h(Xξ′)(i)

ai.
ˆ
Pop(i, l) ‖ Se(Xξ′)

˜
∗

A Context-Free Process as a Pushdown Automaton 11

Split off the case that will pop the top element of the stack, namely when
i ∈ IX and l = h(Xξ′)(i). By the same argument as in the previous case,
we can write the first two summations as

∑
i∈IX .

=
X
i∈IX

ai.
ˆ
Pop(i, h(Xξ′)(i)) ‖ Se(Xξ′)

˜
∗

+
X
i∈I

X
0<l≤h(Xξ′)(i)

i6∈IX∨l 6=h(Xξ′)(i)

ai.
ˆ
Pop(i, l) ‖ Se(Xξ′)

˜
∗

(+
ˆ
1 ‖ Se(Xξ′)

˜
∗)h(Xξ′)(1)≥1

Consider the first summation. If i ∈ IX and l = h(Xξ′)(i), then h(ξ′)(i) =
l−1 by Lemma 1 and therefore by the definitions of Pop(i, l) and Se(Xξ′):

=
X
i∈IX

ai.

2664 X
〈V,A′〉∈D

i∈Iv∧A′(i)=l−1

?〈V,A′〉.X̂(i, A′) ‖ S〈X,h(ξ′)〉e(ξ′)

3775
∗

+
X
i∈I

X
0<l≤h(Xξ′)(i)

i 6∈IX∨l 6=h(Xξ′)(i)

ai.
ˆ
Pop(i, l) ‖ Se(Xξ′)

˜
∗

(+
ˆ
1 ‖ Se(Xξ′)

˜
∗)h(Xξ′)(1)≥1

The stack may contain a series of transparent variables with multisets
in which the occurrence of index i is strictly smaller than at the top. So,
only the top element can be popped.

=
X
i∈IX

ai.τ.
h
X̂(h(ξ′)) ‖ Se(ξ′)

i
∗

+
X
i∈I

X
0<l≤h(Xξ′)(i)

i 6∈IX∨l 6=h(Xξ′)(i)

ai.
ˆ
Pop(i, l) ‖ Se(Xξ′)

˜
∗

(+
ˆ
1 ‖ Se(Xξ′)

˜
∗)h(Xξ′)(1)≥1

Now, consider the second summation and optional summand. Given
that 0 < l ≤ h(Xξ′)(i), it follows from the combination of Lemma 1
(in case i 6∈ IX) or l 6= h(Xξ)(i) (in case i ∈ IX), that 0 < l ≤
h(ξ′)(i). Because we have forgetfulness of the stack Se(Xξ′), it holds that[
Pop(i, l) ‖ Se(Xξ′)

]
∗ =

[
Pop(i, l) ‖ Se(ξ′)

]
∗ and that if h(Xξ′)(1) ≥ 1,

then h(ξ′)(1) ≥ 1.

=
X
i∈IX

ai.τ.
h
X̂(h(ξ′)) ‖ Se(ξ′)

i
∗

+
X
i∈I

X
0<l≤h(ξ′)(i)

ai.
ˆ
Pop(i, l) ‖ Se(ξ′)

˜
∗

(+
ˆ
1 ‖ Se(ξ′)

˜
∗)h(ξ′)(1)≥1

12 J.C.M. Baeten et al.

Apply the definition of X̂(i, h(ξ′)) on the first summation. Substitute
the second summation and the optional summand with the definition of
Ctrl(ξ′).

=
X
i∈IX

ai.τ.
ˆ
Push(ξi, h(ξ′)) ‖ Se(ξ′)

˜
∗ +

ˆ
Ctrl(ξ′) ‖ Se(ξ′)

˜
∗

Perform |ξi| pushes by repeatedly applying the definitions of Push(ξ, A)
and Se(ξ).

=
X
i∈IX

ai.τ
|ξi|+1.

ˆ
Ctrl(h(ξiξ

′)) ‖ Se(ξiξ′)
˜
∗ +

ˆ
Ctrl(ξ′) ‖ Se(ξ′)

˜
∗

=
X
i∈IX

ai.
ˆ
Ctrl(h(ξiξ

′)) ‖ Se(ξiξ′)
˜
∗ +

ˆ
Ctrl(ξ′) ‖ Se(ξ′)

˜
∗

=
X
i∈IX

ai.P (ξiξ
′) + P (ξ′).

This concludes our proof that there exists a, possibly infinite, recursive spec-
ification over MA that, in parallel with a partially forgetful stack, is equivalent
to a context-free process P . ut

In the following subsections, we will study under which conditions this spec-
ification reduces to a finite recursive specification over MA.

4.2 Opacity

In [18], context-free processes with 0 but without 1 were presented. Related
to the absence of 1, we find that the intermediate solution reduces to a finite
recursive specification, if none of the variables are transparent (V+1 = ∅), i.e.
the specification is opaque.

From the specification of Push(ξ, A) we observe that now only sets are pushed
on the stack (i.e. multisets in which each element occurs at most once). Hence,
we can use a data set D′ = V ×P(I ∪ {1}) that no longer is infinite. We obtain
a new, finite recursive specification, by replacing the equations for S, Ctrl(A),
Pop(i, l) and Push(ξ, A) by the following ones:

S = 1 +
X

〈V,A〉∈D′
?〈V,A〉.S · !〈V,A〉.S,

Ctrl(A) =
X
i∈A

ai.Pop(i) (+ 1)1∈A,

Pop(i) =
X

〈V,A〉∈D′
i∈IV

?〈V,A〉.V̂ (i, A),

Push(1, A) = Ctrl(A),

Push(ξY,A) = !〈Y,A〉.Push(ξ, IY).

Corollary 1. For any context-free process P with recursive specification E that
is opaque, there exists a regular process Q such that P =

[
Q ‖ Se(X)

]
∗.

A Context-Free Process as a Pushdown Automaton 13

4.3 Bounded Branching

Consider the following example, in which the variable Y is transparent.

X = a.X · Y + b.1, Y = 1 + c.1.

By executing a n times followed by b, the system gets to state Y n. Here we have
unbounded branching, since Y n c−→ Y k for every k < n. This means state Y n has
n different outgoing c-steps, since none of the states Y k are bisimilar. Thus, we
cannot put a bound on the number of summands in the entire specification. The
observation that the presence of 1-summands can cause unbounded branching
is due to [8].

In case we have unbounded branching, it can be shown that there is no finite
solution modulo rooted branching bisimulation. The reason for this, is that a
regular process is certainly boundedly branching, so that the introduction of
unbounded branching must take place through communication with the stack
(in any solution, not only ours). This will result in internal τ transitions to states
that are not rooted branching bisimilar, which makes that the τ transitions
cannot be eliminated.

Assume now, that we have a specification for P that results in boundedly
branching behavior, then the intermediate solution (see Sect. 4.1) does reduce to
a finite recursive specification. In that case, the number of variables in a sequence
ξ that can perform a certain action is bounded by some natural number N . The
stack itself is an example of such a process. Hence, h(ξ)(i) ≤ N for any i ∈ I, so
the multisets in the data type D will never contain more than N occurrences for
each index. We can reduce our specification by replacing Ctrl(A) by the following
equation:

Ctrl(A) =
X
i∈I

X
0<l≤A(i)≤N

ai.Pop(i, l) (+ 1)A(1)≥1.

Corollary 2. For any context-free process P with recursive specification E that
has bounded branching, there exists a regular process Q such that P =

[
Q ‖ Se(X)

]
∗.

4.4 Unrestricted

In the previous subsection, we showed that there is no suitable pushdown au-
tomaton for the context-free process P , if P has unbounded branching. However,
this observation relies on the fact that certain τ transitions cannot be elimi-
nated. In this subsection, we show that the intermediate solution reduces to a
finite recursive specification, for any P , if we accept the axiom of contrasimula-
tion [12,19]:

a.(τ.x+ τ.y) = a.x+ a.y (a ∈ A).

By this we weaken the equivalence on our transition systems. We do not know
whether there is a stronger equivalence in the linear-time – branching-time spec-
trum II [12] for which a solution exists.

Starting from the intermediate solution (see Sect. 4.1), we can derive the
following using the axiom of contrasimulation. In the first step, we use the

14 J.C.M. Baeten et al.

observation that, given some i ∈ I and 0 < l ≤ h(ξ)(i), there exists a ξi,l
such that 〈V (i), h(ξi,l)〉e(ξi,l) is a suffix of the stack contents e(ξ), reachable
through the forgetfulness of the stack. In the last step, we use the claim that∑

0<l≤h(ξ)(i)
[
Pop(i, l) ‖ Se(ξ)

]
∗ =

[
Pop(i) ‖ Se(ξ)

]
∗.ˆ

Ctrl(h(ξ)) ‖ Se(ξ)
˜
∗ =

X
i∈I

X
0<l≤h(ξ)(i)

ai.
ˆ
Pop(i, l) ‖ Se(ξ)

˜
∗ (+ . . .)

=
X
i∈I

X
0<l≤h(ξ)(i)

ai.τ.
h

ˆV (i)(i, h(ξi,l)) ‖ Se(ξi,l)
i
∗

(+ . . .)

=
X
i∈I

h(ξ)(i)≥1

ai.
“ X

0<l≤h(ξ)(i)

τ.τ.
h

ˆV (i)(i, h(ξi,l)) ‖ Se(ξi,l)
i
∗

”
(+ . . .)

=
X
i∈I

h(ξ)(i)≥1

ai.
“ X

0<l≤h(ξ)(i)

τ.
h

ˆV (i)(i, h(ξi,l)) ‖ Se(ξi,l)
i
∗

”
(+ . . .)

=
X
i∈I

h(ξ)(i)≥1

ai.
“ X

0<l≤h(ξ)(i)

ˆ
Pop(i, l) ‖ Se(ξ)

˜
∗

”
(+ . . .)

=
X
i∈I

h(ξ)(i)≥1

ai.
ˆ
Pop(i) ‖ Se(ξ)

˜
∗ (+ . . .).

We can reduce our specification by replacing Ctrl(A) and introducing Pop(i):

Ctrl(A) =
X
i∈I

A(i)≥1

ai.Pop(i) (+ 1)A(1)≥1,

Pop(i) =
X

〈V,A〉∈D
i∈IV

?〈V,A〉.V̂ (i, A).

Finally, because we never inspect the multiplicity of an index in a multiset
nor remove an element, we can replace multisets by sets and use i ∈ A instead
of A(i) ≥ 1 and ∪ instead of].

Corollary 3. For any context-free process P with recursive specification E,
there exists a regular process Q such that P =

[
Q ‖ Se(X)

]
∗, assuming the axiom

of contrasimulation.

5 Concluding Remarks

Every context-free process can be realized as a pushdown automaton. A push-
down automaton in concurrency theory is a regular process communicating with
a stack.

We define a context-free process as the bisimulation equivalence class of a
transition system given by a finite guarded recursive specification over Sequential
Algebra. This algebra is needed for a full correspondence with automata theory,
and includes constants 0,1 not included in previous definitions of a context-free
process.

A Context-Free Process as a Pushdown Automaton 15

The most difficult case is when the given context-free process has unbounded
branching. This can only happen when a state of the system is given by a se-
quence of variables that have 1-summands. In this case, there is no solution in
rooted branching bisimulation semantics. We have found a solution in contrasim-
ulation semantics, but do not know whether there are stronger equivalences in
the spectrum of [12] for which a solution exists.

Concerning the reverse direction, not every regular process communicating
with a stack is a context-free process. First of all, one must allow τ steps in
the definition of context-free processes, because not all τ -steps of a pushdown
automaton can be removed modulo rooted branching bisimulation or contrasim-
ulation. Moreover, even if we allow τ steps, the theory of [17] shows that push-
down automata are more expressive than context-free processes without 1. It is
not trivial whether this result is still true when the expressivity of context-free
processes is enlarged by adding termination. Research in this direction is left as
future work.

The other famous result concerning context-free processes is the fact that
bisimulation equivalence is decidable on this class, see [11]. Again, this result
has been established for processes not including 0,1. We expect that addition
of 0 will not cause any difficulties, but addition of 1 will. We leave as an open
problem whether bisimulation is decidable on the class of context-free processes
as we have defined it.

Most questions concerning regular processes are settled, as we discussed in
Sect. 2. A very important class of processes to be considered next are the com-
putable processes. In [3], it was demonstrated that a Turing machine in con-
currency theory can be presented as a regular process communicating with two
stacks. By this means, it was established that every computable process can be
realized as the abstraction of a solution of a finite guarded recursive specifica-
tion over communication algebra. This result also holds in the presence of the
constant 1.

There are more classes of processes to be considered. The class of so-called
basic parallel processes is given by finite guarded recursive specifications over
Minimal Algebra extended with parallel composition (without communication).
A prime example of such a process is the bag. Does the result of [10], that
bisimulation is decidable on this class, still hold in the presence of 1? Can we
write every basic parallel process as a regular process communicating with a
bag?

Acknowledgments

We would like to thank the members of the Formal Methods group, in particular
Bas Luttik, for their comments, suggestions and vlaai.

The research of Van Tilburg was supported by the project “Models of Com-
putation: Automata and Processes” (nr. 612.000.630) of the Netherlands Orga-
nization for Scientific Research (NWO).

16 J.C.M. Baeten et al.

References

1. Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In:
J. Bergstra, A. Ponse, S. Smolka (eds.) Handbook of Process Algebra, pp. 197–292.
North-Holland (2001)

2. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes. Cambridge University Press (2008)

3. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair
abstraction rule. Theoretical Computer Science 51(1–2), 129–176 (1987)

4. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Decidability of bisimulation equiva-
lence for processes generating context-free languages. Journal of the ACM 40(3),
653–682 (1993)

5. Baeten, J.C.M., Bravetti, M.: A ground-complete axiomatization of finite state
processes in process algebra. In: M. Abadi, L. de Alfaro (eds.) Proceedings of
CONCUR 2005, no. 3653 in LNCS, pp. 246–262. Springer (2005)

6. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press
(1990)

7. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. In-
formation and Control 60(1/3), 109–137 (1984)

8. Bosscher, D.J.B.: Grammars modulo bisimulation. Ph.D. thesis, University of
Amsterdam (1997)

9. Caucal, D.: Branching bisimulation for context-free processes. In: R. Shyamasundar
(ed.) Proceedings of FSTTCS’92, no. 652 in LNCS, pp. 316–327. Springer-Verlag
(1992)

10. Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation equivalence is decidable for
basic parallel processes. In: E. Best (ed.) Proceedings of CONCUR 1993, no. 715
in LNCS, pp. 143–157. Springer-Verlag (1993)

11. Christensen, S., Hüttel, H., Stirling, C.: Bisimulation equivalence is decidable for
all context-free processes. In: W. Cleaveland (ed.) Proceedings of CONCUR 1992,
no. 630 in LNCS, pp. 138–147. Springer-Verlag (1992)

12. Glabbeek, R.J. van: The linear time – branching time spectrum ii. In: E. Best
(ed.) Proceedings of CONCUR 1993, no. 715 in LNCS, pp. 66–81. Springer-Verlag
(1993)

13. Glabbeek, R.J. van, Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM 43(3), 555–600 (1996)

14. Groote, J.F., Reniers, M.A.: Algebraic process verification. In: J. Bergstra,
A. Ponse, S. Smolka (eds.) Handbook of Process Algebra, pp. 1151–1208. North-
Holland (2001)

15. Luttik, B.: Choice quantification in process algebra. Ph.D. thesis, University of
Amsterdam (2002)

16. Moller, F.: The importance of the left merge operator in process algebras. In:
M. Paterson (ed.) Proceedings of ICALP’90, no. 443 in LNCS, pp. 752–764.
Springer-Verlag (1990)

17. Moller, F.: Infinite results. In: U. Montanari, V. Sassone (eds.) Proceedings of
CONCUR ’96, no. 1119 in LNCS, pp. 195–216. Springer-Verlag (1996)

18. Srba, J.: Deadlocking states in context-free process algebra. In: L. Brim, J. Gruska,
J. Zlatuska (eds.) Proceedings of MFSC’98, no. 1450 in LNCS, pp. 388–398.
Springer-Verlag (1998)

19. Voorhoeve, M., Mauw, S.: Impossible futures and determinism. Information Pro-
cessing Letters 80(1), 51–58 (2001)

