
Computations and Interaction

Jos C.M. Baeten1,2, Bas Luttik2,3, and Paul van Tilburg2

1 Department of Mechanical Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands,

2 Division of Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands,

3 Department of Computer Science, Vrije Universiteit Amsterdam,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{j.c.m.baeten,s.p.luttik,p.j.a.v.tilburg}@tue.nl

Abstract. We enhance the notion of a computation of the classical the-
ory of computing with the notion of interaction. In this way, we enhance
a Turing machine as a model of computation to a Reactive Turing Ma-
chine that is an abstract model of a computer as it is used nowadays,
always interacting with the user and the world.

1 Introduction

What is a computation? This is a central question in the theory of computing,
dating back to 1936 [17]. The classical answer is that a computation is given by
a Turing machine, with the input given on its tape at the beginning, after which
a sequence of steps takes place, leaving the output on the tape at the end. A
computable function is a function of which the transformation of input to output
can be computed by a Turing machine.

A Turing machine can serve in this way as a basic model of a computation,
but cannot serve as a basic model of a computer. Well, it could up to the advent
of the terminal in the 1970s. Before that, input was given as a stack of punch
cards at the start, and output of a computation appeared as a printout later.
The terminal made direct interaction with the computer possible. Nowadays, a
computer is interacting continuously, with the user at the click of a mouse or
with many other computers all over the world through the Internet.

An execution of a computer is thus not just a series of steps of a computation,
but also involves interaction. It cannot be modeled as a function, and has inher-
ent nondeterminism. In this paper, we make the notion of an execution precise,
and compare this to the notion of a computation. To illustrate the difference
between a computation and an execution, we can say that a Turing machine
cannot fly an airplane, but a computer can. An automatic pilot cannot know all
weather conditions en route beforehand, but can react to changing conditions
real-time.

Computability theory is firmly grounded in automata theory and formal lan-
guage theory. It progresses from the study of finite automata to pushdown au-
tomata and Turing machines. Of these different classes of automata, it studies



the languages, the sets of strings, induced by them. We can view a language as
an equivalence class of automata (under language equivalence).

The notion of interaction has been studied extensively in concurrency theory
and process theory, see e.g. [13]. It embodies a powerful parallel composition
operator that is used to compose systems in parallel, including their interaction.
The semantics of concurrency theory is mostly given in terms of transition sys-
tems, that are almost like automata. However, there are important differences.

First of all, a notion of final state, of termination, is often missing in con-
currency theory. The idea is that concurrency theory often deals with so-called
reactive systems, which need not terminate but are always on, reacting to stimuli
from the environment. As a result, termination is often neglected in concurrency
theory, but is nevertheless an important ingredient, as shown and fully worked
out in [2]. Using this presentation of concurrency theory as a starting point, we
obtain a full correspondence with automata theory: a finite transition system is
exactly a finite automaton. On the other hand, we stress that we fully incor-
porate the reactive systems approach of concurrency theory: non-terminating
behaviour is also relevant behaviour, that is taken into account.

A second difference between automata theory and concurrency theory is that
transition systems need not be finite. Still, studying the subclass of finite transi-
tion systems yields useful insights for the extension to pushdown automata and
Turing machines.

The third and main difference between automata theory and concurrency the-
ory is that language equivalence is too coarse to capture a notion of interaction.
Looking at an automaton as a language acceptor, acceptance of a string repre-
sents a particular computation of the automaton, and the language is the set of
all its computations. The language-theoretic interpretation abstracts from the
moments of choice within an automaton. For instance, it does not distinguish be-
tween, on the one hand, the automaton that first accepts an a and subsequently
chooses between accepting a b or a c, and, on the other hand, the automaton that
starts with a choice between accepting ab and accepting ac. As a consequence,
the language-theoretic interpretation is only suitable under the assumption that
an automaton is a stand-alone computational device; it is unsuitable if some
form interaction of the automaton with its environment (user, other automata
running in parallel, etc.) may influence the course of computation.

Therefore, other notions of equivalence are studied in concurrency theory,
capturing more of the branching structure of an automaton. Prominent among
these is bisimulation equivalence [15]. When silent steps are taken into account,
the preferred variant is branching bisimilarity, arguably preserving all relevant
moments of choice in a system [11].

In this paper we study the notion of a computation, taking interaction into
account. We define, next to the notion of a computable function, the notion of
an executable process. An executable process is a behaviour that can be exhib-
ited by a computer (interacting with its environment). An executable process is a
branching bisimulation equivalence class of transition systems defined by a Reac-
tive Turing Machine. A Reactive Turing Machine is an adaptation of the classical



Turing Machine that can properly deal with ubiquitous interaction. Leading up
to the definition of the Reactive Turing Machine, we reconsider some of the
standard results from automata theory when automata are considered modulo
branching bisimilarity instead of language equivalence.

In Section 3 we consider finite-state processes, defined as branching bisim-
ulation equivalence classes of finite labeled transition systems that are finite
automata. The section illustrates the correspondence between finite automata
and linear recursive specifications that can be thought of as the process-theoretic
counterpart of regular grammars.

In Section 4 we consider pushdown processes, defined as branching bisimula-
tion equivalence classes of labeled transition systems associated with pushdown
automata. We investigate the correspondence between pushdown processes and
processes definable by sequential recursive specifications, which can be thought
of as the process-theoretic counterpart of context-free grammars.

In Section 5 we define executable processes, defined as branching bisimulation
equivalence classes of labeled transition systems associated with Reactive Turing
Machines. We highlight the relationship of computable functions and executable
processes, laying the foundations of executability theory alongside computability
theory.

2 Process theory

In this section we briefly recap the basic definitions of the process algebra TCP∗

τ

(Theory of Communicating Processes with silent step and iteration). This pro-
cess algebra has a rich syntax, allowing to express all key ingredients of con-
currency theory, including termination that enables a full correspondence with
automata theory. It also has a rich theory, fully worked out in [2].

Syntax We presuppose a finite action alphabet A, and a countably infinite set of
names N . The actions in A denote the basic events that a process may perform.
We furthermore presuppose a finite data alphabet D, a finite set C of channels,
and assume that A includes special actions c?d, c!d, c!?d (d ∈ D, c ∈ C), which,
intuitively, denote the event that datum d is received, sent, or communicated
along channel c.

Let N ′ be a finite subset of N . The set of process expressions P over A and
N ′ is generated by the following grammar:

p ::= 0 | 1 | a.p | τ.p | p · p | p∗ | p + p | p ‖ p | ∂c(p) | τc(p) | N

(a ∈ A, N ∈ N ′, c ∈ C) .

Let us briefly comment on the operators in this syntax. The constant 0 denotes
inaction or deadlock, the unsuccessfully terminated process. It can be thought of
as the automaton with one initial state that is not final and no transitions. The
constant 1 denotes the successfully terminated process. It can be thought of as
the automaton with one initial state that is final, without transitions. For each



action a ∈ A there is a unary operator a. denoting action prefix; the process
denoted by a.p can do an a-transition to the process denoted by p. The τ -
transitions of a process will, in the semantics below, be treated as unobservable,
and as such they are the process-theoretic counterparts of the so-called λ- or ǫ-
transitions in the theory of automata and formal languages. We write Aτ for A∪
{τ}. The binary operator · denotes sequential composition. The unary operator ∗

is iteration or Kleene star. The binary operator + denotes alternative composition
or choice. The binary operator ‖ denotes parallel composition; actions of both
arguments are interleaved, and in addition a communication c!?d of a datum d
on channel c can take place if one argument can do an input action c?d that
matches an output action c!d of the other component. The unary operator ∂c(p)
encapsulates the process p in such a way that all input actions c?d and output
actions c!d are blocked (for all data) so that communication is enforced. Finally,
the unary operator τc(p) denotes abstraction from communication over channel
c in p by renaming all communications c!?d to τ -transitions.

Let N ′ be a finite subset of N , used to define processes by means of (recur-
sive) equations. A recursive specification E over N ′ is a set of equations of the

form N
def
= p with as left-hand side a name N and as right-hand side a process

expression p. It is required that a recursive specification E contains, for every
N ∈ N ′, precisely one equation with N as left-hand side.

One way to formalize the operational intuitions we have for the syntactic
constructions of TCP∗

τ , is to associate with every process expression a labeled
transition system.

Definition 1 (Labeled Transition System). A labeled transition system L
is defined as a four-tuple (S,→, ↑, ↓) where:

1. S is a set of states,

2. → ⊆ S ×Aτ × S is an Aτ -labeled transition relation on S,

3. ↑ ∈ S is the initial state,

4. ↓ ⊆ S is the set of final states.

If (s, a, t) ∈ →, we write s
a−−→ t. If s is a final state, i.e., s ∈ ↓, we write s↓.

We see that a labeled transition system with a finite set of states is exactly a
finite (nondeterministic) automaton.

We use Structural Operational Semantics [16] to associate a transition re-
lation with process expressions: we let → be the Aτ -labeled transition relation
induced on the set of process expressions P by the operational rules in Table 1.
Note that the operational rules presuppose a recursive specification E.

Let → be an Aτ -labeled transition relation on a set S of states. For s, s′ ∈ S
and w ∈ A∗ we write s

w
−−։ s′ if there exist states s0, . . . , sn ∈ S and actions

a1, . . . , an ∈ Aτ such that s = s0
a1−−→ · · · an−−→ sn = s′ and w is obtained from

a1 · · · an by omitting all occurrences of τ . ε denotes the empty word. We say a
state t ∈ S is reachable from a state s ∈ S if there exists w ∈ A∗ such that
s

w−−։ t.



1 ↓ p∗ ↓ a.p
a

−−→ p

p
a

−−→ p′

(p + q)
a

−−→ p′

q
a

−−→ q′

(p + q)
a

−−→ q′

p ↓

(p + q) ↓

q ↓

(p + q) ↓

p
a

−−→ p′

p · q
a

−−→ p′ · q

p ↓ q
a

−−→ q′

p · q
a

−−→ q′

p ↓ q ↓

p · q ↓

p
a

−−→ p′

p∗ a
−−→ p′ · p∗

p
a

−−→ p′

p ‖ q
a

−−→ p′ ‖ q

q
a

−−→ q′

p ‖ q
a

−−→ p ‖ q′

p ↓ q ↓

p ‖ q ↓

p
c!d

−−→ p′ q
c?d

−−−→ q′

p ‖ q
c!?d

−−→ p′ ‖ q′

p
c?d

−−−→ p′ q
c!d

−−→ q′

p ‖ q
c!?d

−−→ p′ ‖ q′

p
a

−−→ p′ a 6= c?d, c!d

∂c(p)
a

−−→ ∂c(p
′)

p ↓

∂c(p) ↓

p
c!?d

−−→ p′

τc(p)
τ

−−→ τc(p
′)

p
a

−−→ p′ a 6= c!?d

τc(p)
a

−−→ τc(p
′)

p ↓

τc(p) ↓

p
a

−−→ p′ (N
def
= p) ∈ E

N
a

−−→ p′

p ↓ (N
def
= p) ∈ E

N ↓

Table 1: Operational rules for TCP∗

τ and a recursive specification E (a ranges
over Aτ , d ranges over D, and c ranges over C).

Definition 2. Let E be a recursive specification and let p be a process expres-
sion. We define the labeled transition system TE(p) = (Sp ,→p , ↑p , ↓p) associated
with p and E as follows:

1. the set of states Sp consists of all process expressions reachable from p;
2. the transition relation →p is the restriction to Sp of the transition relation

→ defined on all process expressions by the operational rules in Table 1, i.e.,
→p = → ∩ (Sp ×Aτ × Sp).

3. the process expression p is the initial state, i.e. ↑p = p; and
4. the set of final states consists of all process expressions q ∈ Sp such that q↓,

i.e., ↓p = ↓ ∩ Sp .

If we start out from a process expression not containing a name, then the
transition system defined by this construction is finite and so is a finite automa-
ton.

Given the set of (possibly infinite) labeled transition systems, we can divide
out different equivalence relations on this set. Dividing out language equivalence
throws away too much information, as the moments where choices are made
are totally lost, and behavior that does not lead to a final state is ignored.



An equivalence relation that keeps all relevant information, and has many good
properties, is branching bisimulation as proposed by van Glabbeek and Weij-
land [11]. For motivations to use branching bisimulation as the preferred notion
of equivalence, see [9].

Let → be an Aτ -labeled transition relation, and let a ∈ Aτ ; we write s
(a)
−−→ t

if s a−−→ t or a = τ and s = t.

Definition 3 (Branching bisimilarity). Let L1 = (S1,→1, ↑1, ↓1) and L2 =
(S2,→2, ↑2, ↓2) be labeled transition systems. A branching bisimulation from L1

to L2 is a binary relation R ⊆ S1 × S2 such that ↑1 R ↑2 and, for all states s1

and s2, s1 R s2 implies

1. if s1
a−−→1s′1, then there exist s′2, s

′′
2 ∈ S2 such that s2

ε−−։2s′′2
(a)

−−→2s′2, s1 R s′′2
and s′1 R s′2;

2. if s2
a−−→2 s′2, then there exist s′1, s

′′
1 ∈ S1 such that s1

ε−−։1 s′′1
(a)

−−→1 s′1,
s′′1 R s2 and s′1 R s′2;

3. if s1↓1, then there exists s′2 such that s2
ε−−։2 s′2 and s′2↓2; and

4. if s2↓2, then there exists s′1 such that s1
ε−−→1 s′1 and s′1↓1.

The labeled transition systems L1 and L2 are branching bisimilar (notation:
L1 ↔

b L2) if there exists a branching bisimulation from L1 to L2.

Branching bisimilarity is an equivalence relation on labeled transition sys-
tems [8]. A branching bisimulation from a transition system to itself is called a
branching bisimulation on this transition system. Each transition system has a
maximal branching bisimulation, identifying as many states as possible, found
as the union of all possible branching bisimulations. Dividing out this maximal
branching bisimulation, we get the quotient of the transition system w.r.t. the
maximal branching bisimulation. We define the branching degree of a state as the
cardinality of the set of outgoing edges of its equivalence class in the maximal
branching bisimulation.

A transition system has finite branching if all states have a finite branching
degree. We say a transition system has bounded branching if there exists a natural
number n ≥ 0 such that every state has a branching degree of at most n.
Branching bisimulations respect branching degrees.

3 Regular processes

A computer with a fixed-size, finite memory is just a finite control. This can
be modeled by a finite automaton. Automata theory starts with the notion of a
finite automaton. As nondeterminism is relevant and basic in concurrency theory,
we look at a nondeterministic finite automaton. As a nondeterministic finite
automaton is exactly a finite labeled transition system, we refer to Definition 1
for the definition.

Two examples of finite automata are given in Figure 1.



c

a

a a

a
τ

b

b

a

a

a
a

b

b

Fig. 1. Two examples of finite automata.

Definition 4 (Deterministic finite automaton). A finite automaton M =
(S,A,→, ↑, ↓) is deterministic if, for all states s, t1, t2 ∈ S and for all actions
a ∈ A′, s

a−−։ t1 and s
a−−։ t2 implies t1 = t2.

In the theory of automata and formal languages, it is usually also required
in the definition of deterministic that the transition relation is total in the sense
that for all s ∈ S and for all a ∈ A′ there exists t ∈ S such that s

a−−→ t. The extra
requirement is clearly only sensible in the language interpretation of automata;
we shall not be concerned with it here.

The upper automaton in Figure 1 is nondeterministic and has an unreachable
c-transition. The lower automaton is deterministic and does not have unreach-
able transitions; it is not total.

In the theory of automata and formal languages, finite automata are consid-
ered as language acceptors.

Definition 5 (Language equivalence). The language L(L) accepted by a la-
beled transition system L = (S,→, ↑, ↓) is defined as

L(L) = {w ∈ A∗ | ∃s ∈ ↓ such that ↑
w

−−։ s} .

Labeled transition systems L1 and L2 are language equivalent (notation: L1 ≡
L2) if L(L1) = L(L2).

The language of both automata in Figure 1 is {aaa}∪ {ab2n−1 | n ≥ 1}; the
automata are language equivalent.

A language L ⊆ A∗ accepted by a finite automaton is called a regular lan-
guage. A regular process is a branching bisimilarity class of labeled transition
systems that contains a finite automaton.

In automata theory, every silent step τ and all nondeterminism can be re-
moved from a finite automaton. These results are no longer valid when we con-
sider finite automata modulo branching bisimulation. Not every regular process



has a representation as a finite automaton without τ -transitions, and not ev-
ery regular process has a representation as a deterministic finite automaton.
In fact, it can be proved that there does not exist a finite automaton without
τ -transitions that is branching bisimilar with the upper finite automaton in Fig-
ure 1. Nor does there exist a deterministic finite automaton branching bisimilar
with the upper finite automaton in Figure 1.

Regular expressions A regular expression is a process expression using only the
first 7 items in the definition of process syntax above, so does not contain par-
allel composition or recursion. Not every regular process is given by a regular
expression, see [3]. We show a simple example in Figure 2 of a finite transition
system that is not bisimilar to any transition system that can be associated with
a regular expression.

s t

a

b

Fig. 2. Not bisimilar to a regular expression.

However, if we can also use parallel composition and encapsulation, then
we can find an expression for every finite automaton, see [7]. Abstraction and
recursion are not needed for this result. We can illustrate this with the finite
automaton in Figure 2, but need to replace the label a by st!?a and label b by
ts!?b. Then, we can define the following expressions for states s, t:

s = (ts?b.(st!a.1 + 1))∗, t = (st?a.(ts!b.1 + 1))∗ .

The expressions show the possibilities to enter a state, followed by the possibil-
ities to leave a state, and then iterate. Then, we compose the expressions of the
states in a parallel composition:

∂st,ts(((st!a.1 + 1) · s) ‖ 1 · t) .

Using the operational rules on this resulting expression gives again the finite
automaton in Figure 2.

Regular grammars In the theory of automata and formal languages, the no-
tion of grammar is used as a syntactic mechanism to describe languages. The
corresponding mechanism in concurrency theory is the notion of recursive spec-
ification.

If we use only the syntax elements 0, 1, N (N ∈ N ′), a. (a ∈ Aτ ) and + of
the definition above, then we get so-called linear recursive specifications. Thus,
we do not use sequential composition, parallel composition, encapsulation and
abstraction.



We have the result that every linear recursive specification by means of the
operational rules defined generates a finite automaton, but also conversely, ev-
ery finite automaton can be specified, up to isomorphism, by a linear recursive
specification. We illustrate the construction with an example.

S T

U

V

a

b
a

a

a

Fig. 3. Example automaton.

Consider the automaton depicted in Figure 3. Note that we have labeled each
state of the automaton with a unique name; these will be the names of a recursive
specification E. We will define each of these names with an equation, in such
a way that the labeled transition system TE(S) generated by the operational
semantics in Table 1 is isomorphic (so certainly branching bisimilar) with the
automaton in Figure 3.

The recursive specification for the finite automaton in Figure 3 is:

S
def
= a.T, T

def
= a.U + b.V, U

def
= a.V + 1, V

def
= 0.

This result can be viewed as the process-theoretic counterpart of the result
from the theory of automata and formal languages that states that every lan-
guage accepted by a finite automaton is generated by a so-called right-linear
grammar. There is no reasonable process-theoretic counterpart of the similar
result in the theory of automata and formal languages that every language ac-
cepted by a finite automaton is generated by a left-linear grammar. If we use
action postfix instead of action prefix, then on the one hand not every finite au-
tomaton can be specified, and on the other hand, by means of a simple recursive
equation we can specify an infinite transition system (see [4]).

We conclude that the classes of processes defined by right-linear and left-
linear grammars do not coincide.

4 Pushdown and context-free processes

As an intermediate between the notions of finite automaton and Turing machine,
the theory of automata and formal languages treats the notion of pushdown au-
tomaton, which is a finite automaton with a stack as memory. Several definitions
of the notion appear in the literature, which are all equivalent in the sense that
they accept the same languages.



Definition 6 (Pushdown automaton). A pushdown automaton M is defined
as a six-tuple (S,A,D,→, ↑, ↓) where:

1. S a finite set of states,
2. A is a finite action alphabet,
3. D is a finite data alphabet,
4. → ⊆ S×Aτ × (D∪{ε})×D∗×S is a Aτ × (D∪{ε})×D∗-labeled transition

relation on S,
5. ↑ ∈ S is the initial state, and
6. ↓ ⊆ S is the set of final states.

If (s, a, d, δ, t) ∈ →, we write s
a[d/δ]

−−−−→ t.

The pair of a state together with particular stack contents will be referred to

as the configuration of a pushdown automaton. Intuitively, a transition s
a[d/δ]
−−−−→t

(with a ∈ A) means that the automaton, when it is in a configuration consisting
of a state s and a stack with the datum d on top, can consume input symbol a,

replace d by the string δ and move to state t. Likewise, writing s
a[ε/δ]

−−−−→ t means
that the automaton, when it is in state s and the stack is empty, can consume
input symbol a, put the string δ on the stack, and move to state t. Transitions

of the form s
τ [d/δ]
−−−−→ t or s

τ [ε/δ]
−−−−→ t do not entail the consumption of an input

symbol, but just modify the stack contents.
When considering a pushdown automaton as a language acceptor, it is gener-

ally assumed that it starts in its initial state with an empty stack. A computation
consists of repeatedly consuming input symbols (or just modifying stack contents
without consuming input symbols). When it comes to determining whether or
not to accept an input string there are two approaches: “acceptance by final
state” (FS) and “acceptance by empty stack” (ES). The first approach accepts a
string if the pushdown automaton can move to a configuration with a final state
by consuming the string, ignoring the contents of the stack in this configuration.
The second approach accepts the string if the pushdown automaton can move to
a configuration with an empty stack, ignoring whether the state of this configu-
ration is final or not. These approaches are equivalent from a language-theoretic
point of view, but not from a process-theoretic point of view. We also have a
third approach in which a configuration is terminating if it consists of a termi-
nating state and an empty stack (FSES). We note that, from a process-theoretic
point of view, the ES and FSES approaches lead to the same notion of pushdown
process, whereas the FS approach leads to a different notion. We established in
[4] that for FS, the connection with context-free grammars is more difficult to
make (see further on). That is why we adopt the FSES approach in the sequel.

Definition 7. Let M = (S,A,D,→, ↑, ↓) be a pushdown automaton. The labeled
transition system T (M) associated with M is defined as follows:

1. the set of states of T (M) is S × D∗;
2. the transition relation of T (M) satisfies



(a) (s, dζ)
a−−→(t, δζ) iff s

a[d/δ]
−−−−→ t for all s, t ∈ S, a ∈ Aτ , d ∈ D, δ, ζ ∈ D∗,

and

(b) (s, ε)
a−−→ (t, δ) iff s

a[ε/δ]
−−−−→ t;

3. the initial state of T (M) is (↑, ε); and
4. the set of final states is {(s, ε) | s↓}.

This definition now gives us the notions of pushdown language and push-
down process: a pushdown language is the language of the transition system
associated with a pushdown automaton, and a pushdown process is a branching
bisimilarity class of labeled transition systems containing a labeled transition
system associated with a pushdown automaton.

s t

a[ε/1]
a[1/11]

b[1/ε]

b[1/ε]

Fig. 4. Example pushdown automaton.

As an example, the pushdown automaton in Figure 4 defines the infinite
transition system in Figure 5, that accepts the language {anbn | n ≥ 0}.

(s, ε) (s, 1) (s, 11) (s, 111)

(t, ε) (t, 1) (t, 11)

a a a

b b b

bb

a

b

Fig. 5. A pushdown process.

Only push and pop transitions It is not difficult to see that limiting the set
of transitions to push and pop transitions only in the definition of pushdown
automaton yields the same notion of pushdown process. Here, a push transition
is a transition with label a[ε/d] or a[d/ed], and a pop transition is a transition
with label a[d/ε].

Context-free grammars We shall now consider the process-theoretic version of
the standard result in the theory of automata and formal languages that the set
of pushdown languages coincides with the set of languages generated by context-
free grammars. As the process-theoretic counterparts of context-free grammars
we shall consider so-called sequential recursive specifications in which only the



constructions 0, 1, N (N ∈ N ′), a. (a ∈ Aτ ), · and + occur, so adding
sequential composition to linear recursive specifications.

Sequential recursive specifications can be used to specify pushdown processes.
To give an example, the process expression X defined in the sequential recursive
specification

X
def
= 1 + a.X · b.1

specifies the labeled transition system in Figure 5, which is associated with the
pushdown automaton in Figure 4.

If we would consider pushdown automata with termination just by final state
(irrespective of the contents of the stack), then the transition system of this
pushdown automaton would have every state final, and this cannot be realised
by a sequential recursive specification [4].

The notion of a sequential recursive specification naturally corresponds with
with the notion of context-free grammar: for every pushdown automaton there
exists a sequential recursive specification such that their transition systems are
language equivalent, and, vice versa, for every sequential recursive specification
there exists a pushdown automaton such that their transition systems are lan-
guage equivalent.

A similar result with language equivalence replaced by branching bisimilarity
does not hold. In fact, we shall see that there are pushdown processes that are not
recursively definable by a sequential recursive specification, and that there are
also sequential recursive specifications that define non-pushdown processes. We
shall present a restriction on pushdown automata and a restriction on sequential
recursive specifications that enable us to retrieve the desired equivalence: we
proved in [4] that the set of so-called popchoice-free pushdown processes corre-
sponds with the set of processes definable by a transparency-restricted sequential
recursive specification without head recursion. Our result is not optimal: we give
an example of a pushdown process that is not popchoice-free, but is definable
by a sequential recursive specification.

c[ε/ε]
c[1/1]

b[1/ε] b[1/ε]

a[ε/1]
a[1/11]

Fig. 6. Pushdown automaton that is not popchoice-free.

Consider the pushdown automaton in Figure 6, which generates the transition
system shown in Figure 7. In [14], Moller proved that this transition system can-
not be defined with a BPA recursive specification, where BPA is the restriction
of sequential recursive specifications by omitting the τ -prefix and the constant
0 and by disallowing 1 to occur as a summand in a nontrivial alternative com-
position. His proof can be modified to show that the transition system is not



definable with a sequential recursive specification either. We conclude that not
every pushdown process is definable with a sequential recursive specification.

c c c c

bbb b

a a a

bbb

a

b

Fig. 7. Transition system of automaton of Figure 6.

Note that a push of a 1 onto the stack in the initial state of the pushdown
automaton in Figure 6 can (on the way to termination) be popped again in the
initial state or in the final state: the choice of where the pop will take place cannot
be made at the time of the push. In other words, in the pushdown automaton in
Figure 6 pop transitions may induce a choice in the associated transition system;
we refer to such choice through a pop transition as a popchoice. By disallowing
popchoice we define a class of pushdown processes that are definable with a
sequential recursive specification.

Suppose we have a pushdown automaton that uses only push and pop transi-
tions. A d-pop transition is a transition with label a[d/ε]. We say the pushdown
automaton is popchoice-free iff whenever there are two d-pop transitions, they
lead to the same state. A pushdown process is popchoice-free if it contains a la-
beled transition system associated with a popchoice-free pushdown automaton.

The definition of a pushdown automaton uses a stack as memory. The stack
itself can be modeled as a pushdown process, in fact (as we will see shortly)
it is the prototypical pushdown process. Given a finite data set D, the stack
has an input channel i over which it can receive elements of D and an output
channel o over which it can send elements of D. The stack process is given by
a pushdown automaton with one state ↑ (which is both initial and final) and

transitions ↑
i?d[ε/d]
−−−−−−→ ↑, ↑

i?d[e/de]
−−−−−−→ ↑, and ↑

o!d[d/ε]
−−−−−−→ ↑ for all d, e ∈ D. As

this pushdown automaton has only one state, it is popchoice-free. The following
recursive specification ES defines a stack over data set D:

S
def
= 1 +

∑

d∈D

i?d.S · o!d.S.

The stack process can be used to make the interaction between control and
memory in a pushdown automaton explicit [5]. This is illustrated by the follow-
ing theorem, stating that every pushdown process is equal to a regular process
interacting with a stack.

Theorem 1. For every pushdown automaton M there exists a regular process
expression p and a linear recursive specification E, and for every regular process



expression p and linear recursive specification there exists a pushdown automaton
M such that

T (M) ↔b TE∪ES
(τi,o(∂i,o(p ‖ S))) .

In automata theory, context-free grammars are often reduced to a normal
form, by which they become more tractable. Some of these transformations can
be performed on sequential recursive specifications as well, preserving branching
bisimulation. Others cannot. Useful in our case will be the restricted Greibach
normal form, see [12].

Every sequential recursive specification can be brought into Process Greibach
normal form, that is, satisfying the requirement that every right-hand side of the
equation of N only has summands that are 1 or of the forms a.1, a.X , a.X · Y
or N · X for certain names X, Y . Compared to the case of automata theory,
we cannot remove 1 summands and we cannot remove head recursion (where a
name has a summand that is a sequential composition of itself with another or
the same name).

A convenient property of recursive specification in Process Greibach normal
form is that every reachable state in the labeled transition system associated
with a name N in such a recursive specification will be denoted by a sequential
composition of names (see, e.g., the labeled transition system in Figure 8).

Let p be a process expression in the context of a sequential recursive speci-
fication E. In case there is no head recursion, the associated labeled transition
system TE(p) has finite branching (see, e.g., [2] for a proof). Using head recur-
sion, this is possible, as the following example shows.

X
def
= 1 + X · Y, Y

def
= a.1

Still, restricting to sequential recursive specifications in Process Greibach
normal form is not sufficient to get the desired correspondence between pro-
cesses definable by sequential recursive specifications and processes definable as
a popchoice-free pushdown automaton. Consider the following recursive specifi-
cation, which is in Process Greibach normal form and has no head recursion:

X
def
= a.X · Y + b.1, Y

def
= 1 + c.1.

The labeled transition system associated with X , which is depicted in Figure 8,
has finite but unbounded branching. We claim this cannot be a pushdown pro-
cess.

Note that the unbounded branching is due to the 1-summand in the equation
of Y by which Y n c−−→ Y m for all m < n. A name N in a recursive specification
is called transparent if its equation has a 1-summand; otherwise it is called
opaque. To exclude recursive specifications generating labeled transition systems
with unbounded branching, we will require that transparent names may only
occur as the last element of reachable sequential compositions of names.

Thus, we call a sequential recursive specification in Process Greibach normal
form transparency-restricted if for all (generalized) sequential compositions of



X X · Y X · Y 2 X · Y 3

1 Y Y 2 Y 3

a a a

b b b b

ccc

c c

c

a

c

Fig. 8. Process with unbounded branching.

names reachable from a name in the specification it holds that all but the last
name is opaque.

As an example, note that the specification of the stack over D defined above is
not transparency restricted, because it is not in Process Greibach normal form.
But the same process can be defined with a transparency-restricted recursive
specification, without head recursion: it suffices to add, for all d ∈ D, a name
Td to replace S · o!d.1. Thus we obtain the following transparency-restricted
specification of the stack over D:

S
def
= 1 +

∑

d∈D′

i?d.Td · S, Td
def
= o!d.1 +

∑

e∈D′

i?e.Te · Td .

It can be seen that the labeled transition system associated with a name in
a transparency-restricted specification has either bounded or infinite branching.
In the case without head recursion, the branching degree of a state denoted by
a reachable sequential composition of names is equal to the branching degree of
its first name, and the branching degree of a name is bounded by the number
of summands of the right-hand side of its defining equation. In the case with
head recursion, when name N has a summand N · P and there is a transition
N

a−−→ ξ for a sequence of names ξ, then there are steps N
a−−→ ξ · Mn for any

n-fold sequence of names M , making the branching infinite.
For investigations under what circumstances we can extend the set of push-

down processes to incorporate processes with finite but unbounded branching,
see [5]. In this paper a (partially) forgetful stack is used to deal with transparent
variables on the stack. However, if we allow for τ -transitions in the recursive
specifications, we can use the stack as is presented above. Note also that the
paper does not require the recursive specifications to be transparency-restricted,
but this comes at the cost of using a weaker equivalence (namely contrasimula-
tion [10] instead of branching bisimulation) in some cases.

We are now in a position to establish a process-theoretic counterpart of the
correspondence between pushdown automata and context-free grammars.

Theorem 2. A process is a popchoice-free pushdown process if, and only if,
it is definable by a transparency-restricted recursive specification without head
recursion.



This theorem was proven in [4].

Consider the pushdown automaton shown in Figure 4. This pushdown au-
tomaton is popchoice-free, since both 1-pop transitions lead to the same state.
The method described in the proof of Theorem 2 can now be used to yield a
sequential recursive specification. After simplification, this specification again
reduces to the specification we had before, X = 1 + a.X · b.1.

Thus, we have established a correspondence between a popchoice-free push-
down processes on the one hand, and transparency-restricted recursive specifi-
cation on the other hand, thereby casting the classical result of the equivalence
of pushdown automata and context-free grammars in terms of processes and
bisimulation.

To show that this result is not optimal, consider the following sequential
recursive specification:

X
def
= a.1 + X · Y, Y

def
= b.1

This specification is in Process Greibach normal form, and is transparency-
restricted, as all variables are opaque. The resulting transition system is in-
finitely branching. However, inserting additional τ -steps, we can see it is branch-
ing bisimilar to the transition system in Figure 9.

a a a a

bbb b

τ τ τ

τττ

τ

τ

Fig. 9. Transition system branching bisimilar to infinitely branching one.

Now, checking all configurations we can see this transition system is generated
by the pushdown automaton in Figure 10. This pushdown automaton is not
popchoice-free.

a[ε/ε]
a[1/1]

τ [1/ε] b[1/ε]

τ [ε/1]
τ [1/11]

Fig. 10. Pushdown automaton that is not popchoice-free.



5 Computable processes

We proceed to give a definition of a Turing machine that we can use to generate a
transition system. The classical definition of a Turing machine uses the memory
tape to hold the input string at start up. We cannot use this simplifying trick, as
we do not want to fix the input string beforehand, but want to be able to input
symbols one symbol at a time. Therefore, we make an adaptation of a so-called
off-line Turing machine, which starts out with an empty memory tape, and can
take an input symbol one at a time.

Definition 8 (Reactive Turing Machine). A Reactive Turing Machine M
is defined as a six-tuple (S,A,D,→, ↑, ↓) where:

1. S is a finite set of states,
2. A is a finite action alphabet, Aτ also includes the silent step τ ,
3. D is a finite data alphabet, we add a special symbol � standing for a blank

and put D� = D ∪ {�},
4. → ⊆ S ×Aτ ×D� ×D� ×{L, R}×S is a finite set of transitions or steps,
5. ↑ ∈ S is the initial state,
6. ↓ ⊆ S is the set of final states.

If (s, a, d, e, M, t) ∈ →, we write s
a[d/e]M
−−−−−−→ t, and this means that the ma-

chine, when it is in state s and reading symbol d on the tape, will execute input
action a, change the symbol on the tape to e, will move one step left if M = L
and right if M = R and thereby move to state t. It is also possible that d and/or
e is �: if d is �, the reading head is looking at an empty cell on the tape and
writes e; if e is � and d is not, then d is erased, leaving an empty cell. At the
start of a Turing machine computation, we will assume the Turing machine is in
the initial state, and that the memory tape is empty (only contains blanks).

By looking at all possible executions, we can define the transition system of
a Turing machine. The states of this transition system are the configurations of
the Reactive Turing Machine, consisting of a state, the current tape contents,
and the position of the read/write head. We represent the tape contents by an
element of D∗

�
, replacing exactly one occurrence of a type symbol d by a marked

symbol d̄, indicating that the read/write head is on this symbol. We denote by
D̄� = {d̄ | d ∈ D�} the set of marked tape symbols; a tape instance is a sequence
δ ∈ (D� ∪ D̄�) such that δ contains exactly one element of D̄�.

A tape instance thus is a finite sequence of symbols that represents the con-
tents of a two-way infinite tape. We do not distinguish between tape instances
that are equal modulo the addition or removal of extra occurrences of a blank at
the left or right extremes of the sequence. The set of configurations of a Reactive
Turing Machine now consists of pairs of a state and a tape instance. In order
to concisely describe the semantics of a Reactive Turing Machine in terms of
transition systems on configurations, we use some additional notation.

If δ ∈ D�, then δ̄ is the tape instance obtained by placing the marker on
the right-most symbol of δ if this exists, and �̄ otherwise. Likewise, δ̄ is the
tape instance obtained by placing the marker on the left-most symbol of δ if this
exists, and �̄ otherwise.



Definition 9. Let M = (S,A,D,→, ↑, ↓) be a Turing machine. The labeled
transition system of M , T (M), is defined as follows:

1. The set of states is the set of configurations {(s, δ) | s ∈ S, δ a tape instance}.
2. The transition relation → is the least relation satisfying, for all a ∈ Aτ , d, e ∈

D�, δ, ζ ∈ D∗
�
:

– (s, δd̄ζ)
a−−→ (t, δ̄ eζ) iff s

a[d/e]L
−−−−−→ t,

– (s, δd̄ζ)
a−−→ (t, δē ζ) iff s

a[d/e]R
−−−−−→ t.

3. The initial state is (↑, �̄);
4. (s, δ) ↓ iff s ↓.

Now we define an executable process as the branching bisimulation equiva-
lence class of a transition system of a Reactive Turing Machine.

As an example of a Reactive Turing Machine, we define the (first-in first-
out) queue over a data set D. It has the initial and final state at the head of
the queue. There, output of the value at the head can be given, after which one
move to the left occurs. If an input comes, then the position travels to the left
until a free position is reached, where the value input is stored, after which the
position travels to the right until the head is reached again. We show the Turing
machine in Figure 11 in case D = {0, 1}. A label containing an n, like τ [n/n]L
means there are two labels τ [0/0]L and τ [1/1]L.

The queue process is an executable process, but not a pushdown process.

i?0[n/n]L

o!n[n/�]L

i?1[n/n]L

τ [n/n]L

τ [n/n]L τ [n/n]R

τ [�/0]R

τ [�/1]R

τ [�/�]L

i?n[�/n]R

Fig. 11. Reactive Turing Machine for the FIFO queue.

We call a transition system computable if it is finitely branching and there is
a coding of the states such that the set of final states is decidable and for each
state, we can determine the set of outgoing transitions. A transition system is
effective if its set of transitions and set of final states are recursively enumerable.
The following results are in [6].



Theorem 3. The transition system defined by a Reactive Turing Machine is
computable.

Theorem 4. Every effective transition system is branching bisimilar with a
transition system of a Reactive Turing Machine.

As in the case of the pushdown automaton, we can make the interaction
between the finite control and the memory explicit, and turn this into a recursive
specification.

Theorem 5. For every Reactive Turing Machine M there exists a regular pro-
cess expression p and a linear recursive specification E, and for every regular
process expression p and linear recursive specification there exists a Reactive
Turing Machine M such that

T (M) ↔b TE∪EQ
(τi,o(∂i,o(p ‖ Qio))) .

In this theorem, we use the queue process as defined above, and its speci-
fication EQ to be defined next. By putting a finite control on top of a queue,
we can simulate the tape process of a Reactive Turing Machine. The control of
the Turing machine together with this control, can be specified as a finite-state
process.

We finish by giving a finite recursive specification EQ for a queue with input
channel i and output channel o, Qio, using all syntax elements of our process
theory TCP∗

τ except for sequential composition and iteration. It uses an auxiliary
channel l, and six interrelated equations.

Qio def
= 1 +

∑

d∈D

i?d.τl(∂l(Q
il ‖ (1 + o!d.Qlo)))

Qil def
= 1 +

∑

d∈D

i?d.τo(∂o(Q
io ‖ (1 + l!d.Qol)))

Qlo def
= 1 +

∑

d∈D

l?d.τi(∂i(Q
li ‖ (1 + o!d.Qio)))

Qol def
= 1 +

∑

d∈D

o?d.τi(∂i(Q
oi ‖ (1 + l!d.Qil)))

Qli def
= 1 +

∑

d∈D

l?d.τo(∂o(Q
lo ‖ (1 + i!d.Qoi)))

Qoi def
= 1 +

∑

d∈D

o?d.τl(∂l(Q
ol ‖ (1 + i!d.Qli)))

Now, the theorem above implies that recursive specifications over our syntax
(even omitting sequential composition and iteration) constitute a grammar for
all executable processes.



6 Conclusion

We established the notion of an execution in this paper, that enhances a compu-
tation by taking interaction into account. We do this by marrying computability
theory, moving up from finite automata through pushdown automata to Turing
machines, with concurrency theory, not using language equivalence but branch-
ing bisimilarity on automata.

Every undergraduate curriculum in computer science contains a course on
automata theory and formal languages. On the other hand, an introduction to
concurrency theory is usually not given in the undergraduate program. Both
theories as basic models of computation are part of the foundations of computer
science. Automata theory and formal languages provide a model of computation
where interaction is not taken into account, so a computer is considered as a
stand-alone device executing batch processes. On the other hand, concurrency
theory provides a model of computation where interaction is taken into account.
Concurrency theory is sometimes called the theory of reactive processes.

Both theories can be integrated into one course in the undergraduate curricu-
lum, providing students with the foundation of computing, see [1]. This paper
provides a glimpse of what happens to the Chomsky hierarchy in a concurrency
setting, taking a labeled transition system as a central notion, and dividing out
bisimulation semantics on such transition systems.

References

1. J.C.M. Baeten. Models of Computation: Automata and Processes. Technische
Universiteit Eindhoven, 2010. Syllabus 2IT15.

2. J.C.M. Baeten, T. Basten, and M.A. Reniers. Process Algebra (Equational Theories
of Communicating Processes). Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2009.

3. J.C.M. Baeten, F. Corradini, and C.A. Grabmayer. A characterization of regular
expressions under bisimulation. Journal of the ACM, 54(2):6.1–28, 2007.

4. J.C.M. Baeten, P.J.L. Cuijpers, B. Luttik, and P.J.A. van Tilburg. A process-
theoretic look at automata. In F. Arbab and M. Sirjani, editors, Proceedings
FSEN’09, number 5961 in Lecture Notes in Computer Science, pages 1–33, 2009.

5. J.C.M. Baeten, P.J.L. Cuijpers, and P.J.A. van Tilburg. A context-free process as
a pushdown automaton. In F. van Breugel and M. Chechik, editors, Proceedings
CONCUR’08, number 5201 in Lecture Notes in Computer Science, pages 98–113,
2008.

6. J.C.M. Baeten, B. Luttik, and P.J.A. van Tilburg. Reactive Turing machines.
Draft, 2010.

7. Jos Baeten, Bas Luttik, Tim Muller, and Paul van Tilburg. Expressiveness modulo
bisimilarity of regular expressions with parallel composition. In S. Fröschle and
F.D. Valencia, editors, Proceedings EXPRESS 2010, number xx in EPTCS, pages
229–243, 2010.

8. T. Basten. Branching bisimilarity is an equivalence indeed! Information Processing
Letters, 58(3):141–147, 1996.

9. R.J. van Glabbeek. What is Branching Time Semantics and why to use it? Bulletin
of the EATCS, 53:190–198, 1994.



10. R.J. van Glabbeek. The Linear Time – Branching Time Spectrum I. In J.A.
Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra, pages
3–99. Elsevier, 2001.

11. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim-
ulation semantics. Journal of the ACM, 43(3):555–600, 1996.

12. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Pearson, 2006.

13. R. Milner. A Calculus of Communicating Systems. Number 92 in Lecture Notes
in Computer Science. Springer Verlag, 1980.

14. F. Moller. Infinite results. In U. Montanari and V. Sassone, editors, Proceedings
CONCUR’96, number 1119 in Lecture Notes in Computer Science, pages 195–216,
1996.

15. D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proceedings 5th GI Conference, number 104 in Lecture Notes in Computer
Science, pages 167–183, 1981.

16. Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.
Program., 60-61:17–139, 2004.

17. A.M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42(2):230–265,
1936.


