Expressiveness modulo Bisimilarity of Regular Expressios
with Parallel Composition
(Extended Abstract)

Jos C. M. Baeten Bas Luttik
Eindhoven University of Technology, The Netherlands Eindhoven University of Technology, The Netherlands
j.c.m.baeten@tue.nl Vrije Universiteit Amsterdam, The Netherlands
s.p.luttik@tue.nl

Tim Muller Paul van Tilburg
University of Luxembourg, Luxembourg Eindhoven University of Technology, The Netherlands
tim.muller@uni.lu p.j.a.v.tilburg@tue.nl

The languages accepted by finite automata are preciselatigeidges denoted by regular expres-
sions. In contrast, finite automata may exhibit behavichais¢annot be described by regular expres-
sions up to bisimilarity. In this paper, we consider extensiof the theory of regular expressions
with various forms of parallel composition and study theseffon expressiveness. First we prove
that adding pure interleaving to the theory of regular eggians strictly increases its expressiveness
modulo bisimilarity. Then, we prove that replacing the @tien for pure interleaving by ACP-style
parallel composition gives a further increase in expressgs. Finally, we prove that the theory
of regular expressions with ACP-style parallel compogitamd encapsulation is expressive enough
to express all finite automata modulo bisimilarity. Our ftesextend the expressiveness results ob-
tained by Bergstra, Bethke and Ponse for process algebtlagthe binary variant of) Kleene’s star
operation.

1 Introduction

A well-known theorem by Kleene states that the languagespaed by finite automata are precisely the
languages denoted by a regular expression (see,[€.g.M8ier, in [10], showed how regular expres-
sions can be used to describehaviourby defining an interpretation of regular expressions diyess
finite automata. He then observed that the process-thea@tinterpart of Kleene’s theorem —stating
that every finite automaton is described by a regular exjgress fails: there exist finite automata whose
behaviours cannot faithfully, i.e., up to bisimilarity, described by regular expressions. Baeten, Corra-
dini and Grabmayel [1] recently found a structural propenyfinite automata that characterises those
that are denoted with a regular expression modulo bisiityildn this paper, we study to what extent the
expressiveness of regular expressions increases whensdorms of parallel composition are added.

Our first contribution, in Sectiofl 3, is to show that addingameration for pure interleaving to
regular expressions strictly increases their expressss&emodulo bisimilarity. A crucial step in our
proof consists of characterising the strongly connectadpmments in finite automata denoted by regular
expressions. The characterisation allows us to prove aepropertaining to the exit transitions from
such strongly connected components. If interleaving igddthen it is possible to denote finite automata
violating this property.

Our second contribution, in Sectiéh 4, is to show that réptathe operation for pure interleaving
by ACP-style parallel compositiofl[5], which implementsoan of synchronisation by communication

S. Froschle, F.D. Valencia (Eds.): Workshop on
Expressiveness in Concurrency 2010 (EXPRESS'10).
EPTCS 41, 2010, pp. [=115, doi:10.4204/EPTCSI41.1

http://dx.doi.org/10.4204/EPTCS.41.1

2 Regular Expressions with Parallel Composition modulorBikirity

between components, leads to a further increase in expeessis. To this end, we first characterise the
strongly connected components in finite automata denoteddular expressions with interleaving, and
deduce a property on the exit transitions from such strooghnected components. Then, we present an
expression in the theory of regular expressions with AGkegtarallel composition that denotes a finite
automaton violating this property.

Our third contribution, in Sectioll 5, is to establish thatliad ACP-style parallel composition and
encapsulation to the theory of regular expressions agtyiglids a theory in which every finite automaton
can be expressed up to isomorphism, and hence, since listynit coarser than isomorphism, also up
to bisimilarity. Every expression in the resulting thednyturn, denotes a finite automaton, so this result
can be thought of as an alternative process-theoretic emqanrt of Kleene’s theorem.

The results in this paper are inspired by the results of Berg8ethke and Ponse pertaining to
the relative expressiveness of process algebras with aybiasiant of Kleene's star operation. In|[3]
they establish an expressiveness hierarchy on the extensfdhe process theories BRA), BPAs(A),
PA(A), PAs(A), ACP(A,y), and ACR(A,y) with binary Kleene star. The reason that their results are
based on extensions with the binary version of the Kleeneisthat they want to avoid the process-
theoretic complications arising from the notion of intediae termination (we say that a state in a finite
automaton is intermediately terminating if it is termimagtibut also admits a transition). Most of the
expressiveness results in [3] are included_in [4], with meledborate proofs.

Casting our contributions mentioned above in processrgtieoterminology, we establish a strict
expressiveness hierarchy on the process theorie%ﬁEﬂA (regular expressions) modulo bisimilarity,
PA; 1(A) (regular expressions with interleaving) modulo bisimilaand ACR, (A, y) (regular expres-
sions with ACP-style parallel composition and encapsafgtimodulo bisimilarity. The differences be-
tween the process theories BfA), PAs(A) and ACRA,y) considered [3,14] and the process theories
BPAG 1 (A), PAy1(A) and ACR 4 (A, y) considered in this paper are as follows: we wét®r the con-
stant deadlock which is denoted Byin [3} [4], we include the unary Kleene star instead of its bina
variant, and we include a constahtlenoting the successfully terminated process. The firtrdifice
is, of course, cosmetic, and with the addition of the coristdahe unary and binary variants of Kleene’s
star are interdefinable. So, our results pertaining to tlaive expressiveness of BRA(A), PAy1(A)
and ACR) (A, y) extend the expressiveness hierarchy 0f[3, 4] with the eondt 7 7

In [4] the expressiveness proofs are based on identifyictesyand exit transitions from these cycles.
There are two reasons why the proofs(in [3] dnd [4] cannotyebsiadapted to a setting with First, in
a setting withl and Kleene star there are cycles without any exit transti@econd, the inclusion of the
empty procesd gives intermediate termination, which, combined with thevpusly described different
behaviour of cycles, forces us to consider the more gengtadtsre of strongly connected component.

2 Preliminaries

In this section, we present the relevant definitions for trecgss theory ACP, (A, y) and its subthe-
ories PA ,(A) and BP4,(A). We give their syntax and operational semantics, and thematf
(strong) bisimilarity. We also introduce some auxiliarghaical notions that we need in the remain-
der of the paper, most notably that of strongly connectedpmorant. The expressions of the process
theory BP4 ;(A) are precisely the well-known regular expressions from Hesty of automata and
formal languages, but we shall consider the automata agedavith them modulo bisimilarity instead
of modulo language equivalence.

The process theory AGR(A,) is parametrised by a non-empty sétof actions and acommu-

Baeten, Luttik, Muller & Van Tilburg 3

nication functiony on A, i.e., an associative and commutative binary partial dmera/: A x A — A.
ACP; (A, y) incorporates a form of synchronisation between the comptsra a parallel composition
by allowing certain actions to engage ir@mmunicatiorresulting in another action. The communica-
tion functiony then defines which actions may communicate and what is thdt.rdhe details of this
feature will become clear when we present the operatiomahrécs of parallel composition.

The set of ACB (A, y) expression@ACpal(A’y) is generated by the following grammar:

p:=0|1]a|pp|p+p|pP | PP NP,

with a ranging overA andH ranging over subsets of.

The process theory AGHR, y) (excluding the constant8 and 1, but including a constand with
exactly the same behaviour 8sand without the operatioh) originates with [[5]. The extension of
ACP(A,y) with a constantl was investigated by [9, 2, 14] (in these articles, the constas denoted
€). The extension of ACRA, y) with the binary version of the Kleene star was first proposel@]. The
reader already familiar with the process theory £GP, y) will have noticed that the operatiofj(left
mergg and | (communication mergeare missing from our syntax definition. Inl[5], these opierat
are included as auxiliary operations necessary for a finitenaatisation of the theory. They do not,
however, add expressiveness in our setting with Kleendrsttgad of a general form of recursion. We
have omitted them to achieve a more efficient presentati@uiofesults.

The constant® and1 respectively stand for the deadlocked process and the ssfollg terminated
process, and the constamts A denote processes of which the only behaviour is to execetadhon
a. An expression of the fornp- q is called asequential compositigran expression of the form+ g
is called analternative compositignand an expression of the forpt is called astar expression An
expression of the fornp || g is called aparallel composition and an expression of the fordy (p) is
called arencapsulation

From the names for the constructions in the syntax of ’@ﬂ,‘ﬂ, y), the reader probably has already
an intuitive understanding of the behaviour of the corresiing processes. We proceed to formalise
the operational behaviour by means of a collection of opmral rules (see Tablgl 1) in the style of
Plotkin’s Structural Operational Semantics1[13]. Note hith& communication function in rule 4 is
employed to model a form of communication between paratehwonents: if one of the components
of a parallel composition can execute a transition labeléth a, the other can execute a transition
labelled withb, and the communication functignis defined ora andb, then the parallel composition
can execute a transition labelled wiglia,b). (It may help to think of the actioa as standing for the
event of sending some datuinthe actiorb as standing for the event of receiving datdpand the action
y(a,b) as standing for the event that two components communicatendd) TheA-labelled transition
relat|on—>ACp* L(4,y) @nd the termination relatiopacp; ,(4,y) ON Pace; [(Ay) are the least relations> C
Pacry,(ay) X A x Pacey,(ay) andl € Pacey (ay) satlsfymg the rules in Tablg 1.

The triple Tacp: (4.y) = (iPACPB L(AY)s TP ACPS 1 (ALy)s)2 LACP; (4,), consisting of the ACP;(A,y) ex-
pressions together W|th thé-labelied transition relation and the termination pretiicassociated with
them, is an example of afi-labelled transition system space. In generaldaabelled transition system
space(S,—,]) consists of a (non-empty) s&t the elements of which are callethtes together with
an A-labelled transition relatior~ C Sx A x Sand a subse} C S We shall in this paper consider
two more examples of transition system spaces, obtaineddtsiating the syntax of AQR(A, y) and
making special assumptions about the communication fomcti

Next, we define thed-labelled transition system spa@ea; ,a) = (Pea, (4), —Pas,(4): Pay,(4))
corresponding with the process theorygRAA). The set of P4, (A) expressionﬁ’;;%‘l(A) conS|sts of

4 Regular Expressions with Parallel Composition modulorBikirity

. , N e o 4 4> . Pl .
1 a-%1 p+9-2p p+g-25q p+al p+al
S e o P ad pl g pp "
p-g-p-q p-g- P-al pr - pt Py
p—=p o 4—d pl al

) 14
plla-%p|q plla-®p|d pllal
pp a-%q yabisdefned p-Hp agH pl
Pl QM) ol O (p) -2 du(p) OH(p)L

Table 1: Operational rules for AGR(A,y), withac A andH C A.

the ACR, 1 (A, y) process expressions without occurrences of the consiici. The PA);(A) transi-
tion relat7ion—>pp6‘l(ﬂ> on prp%‘l(A) and the termination predicallap%‘lm) on prp%‘l(A) are the transition
relation and termination predicate induced orp) expressions by the operational rules in Tdble 1
minus the rules 1%5=17. Alternatively (and equivalentlyd transition relation—>pAal(4) can be defined
as the restriction of the transition reIatiemAcpal(A,0)» With @ denoting the communication function that
is everywhere undefined, fb’Aé,l(A)'

To define theA-labelled transition system spaB@pa;, (4) = (?BpAal(A)> 7 BPAS, (A) VBPAS 1 A)) @s-
sociated with the process theory BPAA), let Pgpp; (1) consist of all P4, (A) expressions without
occurrences of the construgt _. The BPA, ; (A) transition relation—gpa; , (1) and the BPA , (A) termi-
nation predicateBpAal(4) are the transition relation and the termination predicadeced on BP4, (A)
expressions by the operational rules in Table 1 minus tresI2ELV. That is;gpa; (4 andinAal(A)
are obtained by restrictingmcp&l(Ay) andiACpal(Ay to (‘PBPAal(A)-

Henceforth, we shall omit the subscripts AGRA,y), PA;,(A) and BPA 1(A) from transition
relations and termination predicates whenever it is cle@nfthe context which transition relation or
termination predicate is meant. Furthermore, we shalhafte ACR (A, y), PAj 1 (A) and BPA) 1 (A),
respectively, to denote the associated transition syspawesT, ACP; 1 (A.y) T PA 1 (A) and T, BPAY 1(A)-

LetT = (S —,]) be anA-labelled transition system spacesl§ € S then we writess— s’ if there
existsa € A such thas—2+ g, ands —% < if there exists no such € A. We denote by the transitive
closure of—, and by— * the reflexive-transitive closure ef. If s—; *< then we say that is reachable
from s; the set of all states reachable frais denoted bys_,. We say that a stateis normedif there
existss such thas—*s ands'|. T is calledregularif [g_, is finite for alls€ S

Lemma 2.1. The transition system spaces AGRA, y), PA; 1 (A), and BPA 1 (A) are all regular.

With every states in T we can associate automaton(or: transition system([s|—,,— N ([s]- X
Ax[9),4 N[, 9). Its states are the states reachable feiits transition relation and termination
predicate are obtained by restricting and] accordingly, and the statgs declared as thiaitial stateof
the automaton. If a transition system space is regular, ttieautomaton associated with a state in it is
finite, i.e., itis a finite automaton in the terminology of autata theory. Thus, we get by Lemmal2.1 that
the operational semantics of AGRA, y), and, a fortiori, that of P4, (A) and BPAj ;(A), associates a
finite automaton with every process expression.

Baeten, Luttik, Muller & Van Tilburg 5

In automata theory, automata are usually considered asidgegacceptors and two automata are
deemed indistinguishable if they accept the same languageguage equivalence is, however, arguably
too coarse in process theory, where the prevalent notioisiimibarity [11,[12].

Definition 2.2. LetT1 = (S, —1,)1) andT2 = (S, —2, |2) be transition system spaces. A binary relation
R C § x S is abisimulationbetweerT; andT; if it satisfies, for allac A and for alls; € S, ands, € S,
such that; R s, the following conditions:

(i) if there existss; € S such that; 31 5}, then there exists, € S such thas, —%»,s, ands; R s);

(ii) if there existss, € S such thas, -2, 5, then there exists| € S such thas; 231§ ands; R s);
and

(iii) s1q if, and only if, ;5.

Statess; € § ands, € S arebisimilar (notation: s; < <) if there exists a bisimulatiofR betweerT;
andJ> such thats; R s;.

To achieve a sufficient level of generality, we have definesihilarity as a relation between tran-
sition system spaces; to obtain a suitable notion of bisitiar between automata one should add the
requirement that the initial states of the automata beadélat

Based on the associated transition system spaces, we cadeime what we mean when some
transition system space is, modulo bisimilarity, less egpive than some other transition system space.

Definition 2.3. Let 71 and T, be transition system spaces. We say thais less expressivéhan T,
(notation: T1 < T>) if every state ifJ; is bisimilar to a state ifT,, and, moreover, there is a stateJin
that isnot bisimilar to some state ifi;.

When we investigate the expressiveness of ;IR,y), we want to be able to chooge So,
we are actually interested in the expressiveness of th@ifaijsunion of all transition system spaces
ACP;, (A, y) with y ranging over all communication functions. We denote thagdition system space
by U, ACPg 1 (A, y). In this paper we shall then establish that BRAA) < PA; ;(A) < U, ACP 1 (A, Y).

We recall below the notion of strongly connected componseg,(e.g./[6]) that will play an impor-
tant rble in establishing that the above hierarchy of iterssystem spaces is strict.

Definition 2.4. A strongly connected componenta transition system spafe= (S —, /) is a maximal
subseC of Ssuch thas—* < for all s,s' € C. A strongly connected compone@is trivial if it consists
of only one state, sa@ = {s}, ands -~ s, otherwise, it ison-trivial.

Note that every element of a transition system space is ameglieof precisely one strongly connected
component of that space. Furthermoresig an element of a non-trivial strongly connected compgnent
thens— " s. Since in a strongly connected component from every elemegrty other element can
be reached, we get as a corollary to Lenima 2.1 that strongipemied components in Agﬂﬂ,y),
PAG1(A) and BPA) 1 (A) are finite.

Let T = (S, —,])) be a transition system space, #& S and letC C S be a strongly connected
component irS. We say tha€ is reachablefrom sif s—*s forall s € C.

Lemma 2.5. Let T1 = (S, —1,11) and T2 = (S, —2,]2) be regular transition system spaces, and let
s €5 ands; € S be such thag, & 5. If 51 is an element of a strongly connected compori&nin

T1, then there exists a strongly connected compo@gméachable frons, satisfying that for alk; € C;
there exists, € C, such thass; < s,.

6 Regular Expressions with Parallel Composition modulorBikirity

3 Relative Expressiveness @PA, ;(A) and PAg 1 (A)

In [3] it is proved that BP4(A) is less expressive than B®d). The proof in [3] is by arguing that
the PAj(A) expressiona-b)*c || d is not bisimilar with a BP4(A) expression. (Actually, the RAA)
expression employed ifl[4] uses only a single actipne., considers the PAA) expression(a-a)*a||
a; we use the actionb, ¢ andd for clarity.) An alternative and more general proof that BAg(A)
expression above is not expressible in BRA) is presented in [4]. There itis established that thg(PA
expression above fails the following general property, auhis satisfied by all BP§{.A)-expressible
automata:

If Cis a cycle in an automaton associated with a BB# expression, then there is at most
one statep € C that has an exit transition.

(A cycle is a sequenc@s, - . ., pn) such thatp; — pi+1 (1 <i < n)andp, — p1; an exit transition from
pi is a transitionp; — p{ such that no element of the cycle is reachable f@m

The following example shows that automata associated WRR B(A) expressions do not satisfy
the property above. 7

Example 3.1. Consider the automaton associated with the BRA) expressiori- (a- (a+1))*-b(see
Figure[1) with a cycle; both states on the cycle havet@nsition off the cycle.

Figure 1: A transition system in BRA(A) with a cycle with multiple exit transitions.

In this section we shall establish that BPAA) is less expressive than PAA). As in [4] we
prove that BP4, (A)-expressible automata satisfy a general property that saienaton expressible
in PAg 1 (A) fails to satisfy. We find it technically convenient, howewerbase our relative expressiveness
proofs on the notion of strongly connected component, austaf cycle. Note, e.g., that every process
expression is an element of precisely one strongly condemtenponent, while it may reside in more
than one cycle. Furthermore, pf— g and p andq are in distinct strongly connected components, then
we can be sure thag— qis an exit transition, while ip andq are on distinct cycles, then it may happen
that p is reachable frona,.

3.1 Strongly Connected Components iBPAy ;(A)

We shall now establish that a non-trivial strongly connéatemponent in BPg\ (A) is either of the
form {p.-q*,..., pn-g*} with p; (0 < i < n) reachable frongand{ps,..., pn} Not a strongly connected
component, or of the fordps;-q,...,pn-q} where{p,...,pn} is a strongly connected component.
To this end, let us first establish, by reasoning on the bdsdiseooperational semantics, that process
expressions in a non-trivial strongly connected comporaeatnecessarily sequential compositions; at
the heart of the argument will be the following measure orc@ss expressions.

Definition 3.2. Let p a BPAy ; (A) expression; then(#) is defined with recursion on the structuref
by the following clauses:

Baeten, Luttik, Muller & Van Tilburg 7

(i) #(0) =#(1) =0, and #a) = 1;

(i) #(p-q) =0if gis a star expression, andpt q) = #(q) + 1 otherwise;
(i) #(p+q) = max{#(p),#(q)}+1; and
(V) #(p)=1.

We establish that@®#) is non-increasing over transitions, and, in fact, in mosesalecreases.

Lemma 3.3. If pandp’ are BPA4; ;(A) expressions such that—* f, then #p) > #(p'). Moreover, if
#(p) =#(p'), thenp= p1-gandp = p; - qfor somepy, p; andq.

Proof. First, the special case of the lemma in whigh— [/ is established with induction on derivations
according to the operational rules for BPAA). Then, the general case of the lemma follows from the
special case with a straightforward induction on the lemdth transition sequence fropto p'. O

Let P be a set of process expressions, and)le¢ a process expression; Byq we denote the set of
process expressios q= {p-q| p € P}.

Lemma 3.4. If C is a non-trivial strongly connected component in %EAA), then there exist a set of
process expressio® and a process expressiqrsuch thaC =C’ - q.

We proceed to give an inductive description of the nondfigtrongly connected components in
BPAg 1 (A). The basis for the inductive description is the followingian of basic strongly connected
component.

Definition 3.5. A non-trivial strongly connected compone@t= {pa,...,pn} in BPAy;(A) is basic
if there exist BPA ;(A) expressionspy, ..., p, and a BPA 1(A) expressiong such thatp; = pf - g*
(1<i<n)and{p,...,py} is not a strongly connected component in BRAA).

Proposition 3.6. Let C be a non-trivial strongly connected component in BPA4). Then eithelC is
basic, or there exist a non-trivial strongly connected congmtC’ and a BPﬁ&’l(A) expressiorg such
thatC=C'-q.

Proof. By Lemma 3.4 there exists a set of sta®sand a BP4 ;(A) expressiorg such thaC =C' - q.
If C’ is a non-trivial strongly connected component, then the@siion follows, so it remains to prove
that if C' is not a non-trivial strongly connected component, theis basic. Note that i€’ is not a
strongly connected component, then there @ng € C' such thatp -4 p/. SinceC is a non-trivial
strongly connected component a@id= C' - g, it holds thatp-q—* p’- . Using thatp -4 ¢/, it can
be established with induction on the length of the transiequence fromp-qto p’-qthatqg—" p’-q.
It follows by Lemmd 3.B that #) > #(p' - q), and therefore, according to the definition ¢f % q must
be a star expression. We conclude tGas basic. O

3.2 BPAg,(A) < PAG;(A)

The crucial tool that will allow us to establish that BRAA) is less expressive than RAA) will be
a special property of states with a transition out of theirsgly connected component in BRAA).
Roughly, ifC is a strongly connected component in BRAA), then all states with a transition out Gf
have the same transitions out@f

Definition 3.7. Let C be a strongly connected component in the transition sysgemes = (S —,])
and lets € C. An exit transition fromsis a pair(a,s') such thas-2+ § ands ¢ C. We denote bET(s)
the set of allexit transitionsfrom s, i.e.,ET(s) = {(a,5) | s-2+ S AS ¢ C}. An elemenss e C is called
anexit stateif s| or there exists an exit transition frosn

8 Regular Expressions with Parallel Composition modulorBikirity

Example 3.8. Consider the automaton associated with the BRA) expressiort- (a-b-(c+1))"-d,
(see Figur&l2). It has a strongly connecting component witheixit states, both with one exit transition
(d,1).

a
—
—~(1-(a-b-(c+1) -dy—2 (b (c+1)- (a-b-(c+1)) - d—2—((c+1)- (a-b-(c+1))"-d)
\
d C
1 d

Figure 2: A non-trivial strongly connected component in BRA4) with multiple exit transitions.

Non-trivial strongly connected components in BRAA) arise from executing the argument of a
Kleene star. An exit state of a strongly connected cc)mpoimeBPAal(A) is then a state in which the
execution has the option to terminate. Due to the presenGaroBPA;;(A) this is, however, not the
only type of exit state in BPg\ (A) strongly connected components.

Example 3.9. Consider the automaton associated with the BRA) expressiort - (a- ((b-0) + 1)) -
c (see Figuré]3). The strongly connected component contaiosekit states and two (distinct) exit
transitions. One of these exit transitions leads to a de&dtbstate.

—(1-(a:((b-0)+1))" - O—2—~(((b-0) + 1) (a- ((b-0) +1))" - 0)
_/
c a b

1 ¢ (0@ bo+1))

Figure 3: A strongly connected component with normed eaitditions.

The preceding example illustrates that the special propafristrongly connected components in
BPAg ;1 (A) that we are after, should exclude from consideration anyteasition arising from an oc-
currence of. This is achieved in the following definitions.

Definition 3.10. Let C be a strongly connected component andsletC. An exit transition(a,s') from
sis normedif s’ is normed. We denote HyT,(s) the set of normed exit transitions frosn
An exit states € Cis aliveif s| or there exists a normed exit transition frem

Lemma 3.11. If p-g* —*r, then either there exis{s such thatp—* p’ andr = p’ - g* or there exist
p’ andq such thatp—* p/, p'l,q—*d, andr = - g*.
Lemma 3.12. If C is a basic strongly connected component, tBdp(p) = 0 for all pe C.

Lemma 3.13. LetC be a non-trivial strongly connected component in BPA4), let p € C, and letq be
a BPA;‘M(A) process expression such tiatq is a strongly connected component. Tl is an alive
exit state inC- qiff pis an alive exit state i€ andq is normed.

For a characterisation of the set of normed exit transitad@ssequential composition, it is convenient
to have the following notation: iE is a set of exit transitionk and p is a BPA;;(A) expression, then

E-pisdefined bye-p={(a,q-p)| (a,q) € E}.

Baeten, Luttik, Muller & Van Tilburg 9

Lemma 3.14. LetC be a non-trivial strongly connected component in BP#4), let p € C, and letq be
a normed BPA, (A) process expression such tigatq is a strongly connected component. Then

ETa(p)-qu{(ar)|rZC-qgArisnormedrq-2:r} if pl; and
ETn(p)-q if pf.

Proposition 3.15. Let C be a non-trivial strongly connected component in BP@4). If py andp; are
alive exit states i, thenET,(p1) = ETa(p2).

ET(p-o) -~ {

Proof. Suppose thap;, and p, are alive exit states; we prove by induction on the struobfimon-trivial
strongly connected components in BRAA) as given by Proposition 3.6 th&tT,(p1) = ETn(p2) and
pu iff p2l.

If Cis basic, then by Lemnia 3BT, (p1) = 0 = ET,(p2), and, sincep; andp, are alive exit states,
it also follows from this that botlp,] andp,/.

Suppose thaE = C’ - g, with C’ a non-trivial strongly connected component, andpgtp, € C’' be
such thatp; = p; -qandp; = p,- 0. Sincep; and p, are alive exit states, by Lemrha 3113 so pfeand
p,. Hence, by the induction hypothesET,(p}) = ETa(p,) andpyl iff p,l. From the latter it follows
thatp, | iff po). We now apply LemmBa3.14: if, on the one hapg] andp,/, then

ETa(pr) = ETa(py)-qu{(ar) [r €CATr. q-Sr—*r'|}
=ETh(pb)-qu{(ar) [r¢gCAar.g-r—"r'|} =ET(p2) ,

and if, on the other hang/ andpy/, thenET,(p1) = ETn(p)) - = ETa(p,) - q = ETa(p2). O
a
@@
C C
a
@@

Figure 4: A PA,;(A)-expressible automaton that is not expressible in BA).

The PA;;(A) expressionpy = 1- (a-b)* || c gives rise to the automaton shown in Figlite 4. It has
a strongly connected componédbit= {po, p1} of which the alive exit states have different normed exit
transitions. Hence, by Propositibn 3. ¥%,is not BPA; ; (A)-expressible.

Theorem 3.16.BPA; ; (A) is less expressive than BAA).

4 Relative Expressiveness d?A 1 (A) and ACPg ; (A, y)

The proof in [4] that PA(A) is less expressive than ACPL, y) uses the same expression as the one
showing that BPA(A) is less expressive than BAA4), but it presupposes thgtc,d) = e. Itis claimed
that the associated automaton fails the following geneapgrty of cycles in PA(A):

If Cis a cycle reachable from a BA4) process term and there is a stat€iwith a transition
to a terminating state, then all other state€ihave only successors @

The claim, however, is incorrect, as illustrated by thedieihg example. (We present the example in the
syntax of P4 1(A), but it has a straightforward translation into the syntalAf(A).)

10 Regular Expressions with Parallel Composition modulorBikirity

Example 4.1. Consider the Pgy (A) expressior(a- (b+b-b))*-d, from which the cycle
C={1-(a-(b+b-b))*-d, (b+b-b)-(a-(b+b-b))*-d}

is reachable. Clearly, the first expressiorCitan perform al-transition tol. Then, according to the
property above, every other expression only has transitiomxpressions i6. However,

(b+b-b)-(a-(b+b-b))*-dLsb-(a- (b+b-b))*-d&C .

If we replace, in the property above, the notion of cycle yrbtion of strongly connected compo-
nent, then the resulting property does hold fogRA), but it still fails for PAj (A).

Example 4.2. Consider the Pgy(A) expression(a- b)* || cit gives rise to the following non-trivial
strongly connected componenti- (a-b)* || c, b-(a-b)* || c}. The expressiod- (a-b)* || c can do a
c-transition tol- (a-b)* || 1, for which the termination predicate holds, but at the samel- (a-b)* || ¢
has an exit transitiofc,b- (a-b)* || 1).

In this section we shall establish that PAA) is less expressive than AGRA,). To this end, we
apply the same method as in Secfidn 3. First, we syntagtichhracterise the non-trivial strongly con-
nected components associated withy PA) expressions. Then, we conclude that a weakened version
of the aforementioned property for strongly connected ammepts holds in P§; (A), and present an
ACP; 1 (A, y) expression that does not satisfy it.

4.1 Strongly Connected Components ifPA; ; (A)

To give a syntactic characterisation of the non-triviabsgly connected components in PAA), we
reason again about the operational semantics. First, ven@xhe measure(# from Section[B to
PAG 1 (A) expressions.

Definition 4.3. Let p be a P4 ;(A) expression; #p) is defined with recursion on the structurepby
the claused](i)E(Qv) in Definition 3.2 with the following clse added:

(v) #p| a)=0.
With the extension, the non-increasing measuyre #till in most cases decreases over transitions.

Lemma 4.4.If pandp are PA;;(A) expressions such that—* pf, then #p) > #(p'). Moreover, if
#(p) = #(p'), then eithepp=py-qandp = p;-q, or p=p1 || p2 andp’ = p} || p, for some process
expressiongs, Pz, p;, Ph, andq.

Lemma 4.5. Let p, g andr be PAy;(A) process expressions such tieff g —*r. Then there exist
PA; 1(A) process expressioms andq such thar = p' || ¢, p—* p' andg—* /.

Let P and Q be sets of process expressions; By Q we denote the set of process expressions
PllQ={pllalpePAqge Q}. We also writeP || gandp || Qfor P || {q} and{p} || Q, respectively.

The proof of the following lemma, characterising the sytitaiorm of non-trivial strongly connected
components in Pg\ (A), is a straightforward adaptation and extension of the poboEmmd 3.4, using
Lemmd4.# and Lemnia 4.5 instead of Lenima 3.3.

Lemma 4.6. If Cis a non-trivial strongly connected component irgRAA4), then either there exist a set
of process expressio and a process expressiquuch thaC = C’ - g, or there exist strongly connected
component€; andC; in PAj;(A), at least one of them non-trivial, such ti@at&= Cy || Co.

Baeten, Luttik, Muller & Van Tilburg 11

The notion ofbasicstrongly connected component in PAA) is obtained from Definition 315 by
replacing BPA ,(A) by PAj;(A) everywhere in the definition. In Propositibn13.6 we gave atuative
characterisation of non-trivial strongly connected conmgs in BP4 1 (A). There is a similar inductive
characterisation of non-trivial strongly connected comgus in P4, (A), obtained by adding a case
for parallel composition.

Proposition 4.7. Let C be a non-trivial strongly connected component irpP&4). Then one of the
following holds:

(i) Cis a basic strongly connected component; or

(i) there exist a non-trivial strongly connected compdn@hand a P4 ;(A) expressiorg such that
C=C-qg;or

(i) there exist strongly connected compone@isandC,, at least one of them non-trivial, such that
C=C|Ca.

Note that, in the above proposition, one of the strongly eocted componentS; andC, may be
trivial in which case it consists of a single PAA) expression.

4.2 PAgy(A) < ACPG (A, y)

In Section(B we deduced, from our syntactic characterisatibstrongly connected components in
BPA; 1(A), the property that all alive exit states of a strongly coneeécomponent have the same sets
of normed exit transitions. This property may fail for stghnconnected components in PAA): the
automaton in Figurgl4 is I%ﬁ(fl)-expressible, but the alive exit statpg and p; of the strbngly con-
nected componenfpo, p1} have different normed exit transitions. Note, howevert thase normed
exit transitions both end up in another strongly connectadponent{ p,, ps}. It turns out that we can
relax the requirement on normed exit transitions from gjlpconnected components in BRAA) to

get a requirement that holds for strongly connected commisrie PA;; (A). The idea is to identify exit
transitions if they have the same action and end up in the s&noregly connected component.

Definition 4.8. Let T = (S, —,|) be anA-labelled transition system space. We define a binary oglati
~onA x Shy (a,s) ~ (d,9) iff a=a andsands are in the same strongly connected componefit in

Since the relation of being in the same strongly connectatpoment is an equivalence on states in
a transition system space, it is clear thais an equivalence relation on exit transitions. The follogvi
lemma will give some further properties of the relatisrassociated with Pgy (A).

Lemma 4.9. Let p andq be PA;;(A) expressions, and letandb be actions. If(a, p) ~ (b,q), then
(a7 pr) ~ (b7q'r)' (a7 p H r) ~ (b7q ” r)’ and(aar ” p) ~ (bar ” q)

To formulate a straightforward corollary of this lemma we tise following notation: it is a set of
exit transitionsE andpis a PA{M(A) expression, thek - p, E || pandp || E are defined by

Ellp={(adl p|(aq €E} ,andp|E={(apla)](aq)cE} .

We are now in a position to establish a property of stronglgnezted components in %’/_A(A)
that will allow us to prove that Pg\ (A) is less expressive than A@E(A,y): a strongly connected
componenC in PAal(A) always has a special exit state from which, up~tpall exit transitions are
enabled.

12 Regular Expressions with Parallel Composition modulorBikirity

Lemma 4.10. Let C; andC; be sets of Pj,(A) expressions. The@, | C; is a strongly connected
component iff bottC; andC, are strongly connected components. Moreo@et| C; is non-trivial iff at
least one o€, andC; is non-trivial.

Lemma 4.11. LetC; andC; be a strongly connected components iy PA4), both with alive exit states.
ThenC; || C; is a strongly connected component with alive exit statesand, for allp € C; andq € Cy,

ETa(p @) = (ETa(p) @) U(p || ETa(a)).

To formulate the special property of strongly connected pomnents in P&l(ﬂ) that will allow us
to prove that some AGR (A, y) expressions do not have a counterpart i, BA), we need the notion
of maximal alive exit state.

Definition 4.12. LetT = (S —, |) be anA-labelled transition system space,det_ A x Sbe the equiv-
alence relation associated withaccording to Definition 418, I&€ be a strongly connected component
in 7, and lets € C be an alive exit state. We say trais maximal(modulo~) if for all alive exit states

s € Cand for alleé € ET,(S) there exists an exit transitianc ET,(s) such thae ~ €.

The following proposition establishes the property withiehhwe shall prove that PA (A) is less
expressive than AGR (A, y).

Proposition 4.13. If C is a strongly connected component ingRAA) andC has an alive exit state, then
C has a maximal alive exit state.

Figure 5: An ACR ; (A, y)-expressible automaton that is not expressible ifRA).

Suppose/(b, c) = & then the ACB ; (A, y) expressiomg = 1-(a-b)*-d || c gives rise to the automa-
ton shown in Figur€]5. It has a strongly connected compo@eat{ pp, p1}, and none of its alive exit
states is maximal. Hence, by Proposition #.A@is not PA; ; (A)-expressible.

Theorem 4.14. PA; 1 (A) is less expressive than, ACPg ; (A, Y).

5 Every Finite Automaton is ACPal(A, y)-expressible

Milner observed in[[10] that there exist finite automata the not bisimilar to the finite automaton
associated with a BRA (A) expression. Our proof of Theordm 3116 has Milner's obs@mas an im-
mediate consequence: the finite automaton associatedheitP4, ; (A) expression used in the proof is
not BPA; , (A)-expressible. Similarly, by Theordm 4114, there are finittwanata that are not expressible
in PAG 1 (A).

In this section we shall prove that every finite automasoexpressible in ACP; (A, y), for suitable
choices ofA andy, even up to isomorphism. Before we formally prove the redettus first explain
the idea informally, and illustrate it with an example. Th€H (A, y) expression that we shall asso-
ciate with a finite automaton will have one parallel compdrgar state of the automaton, representing
the behaviour in that state (i.e., which outgoing transgi@ has to which other states and whether it is
terminating). At any time, one of those parallel compongtite one corresponding with the “current

Baeten, Luttik, Muller & Van Tilburg 13

state,” has control. Aa-transition from that current state to a next state cornedpavith a communica-
tion between two components. We make essential use of AGRY)’s facility to let the actiora be the
result of communication.

Example 5.1. Consider the finite automaton in Figuire 6.

2
COMECYDL!

1%
a1

S—)

Figure 6: A finite automaton.

We associate with every stagean ACPal(A, y) expressiorp; as follows:

Po = entero-(Ieaveo,1+leavq,1)>* , P2= enterz-(Ieaveo,o+leavq.3+1)>* ,
pL= enterl-al*-(leaqu)>* , ps = enter3-0>* .

Every p; has arenter; transition to gain control, and by executingpave ; it may then release control to
p; with actionay as effect. We define the communication function so thareer action communicates
with aleave; action, resulting in the actioa,. Loops in the automaton (such as the loop on sigte
require special treatment as they should not release ¢ontro

Let p; be the result of executing trentep-transition frompy. We define the ACP; (A, y) expres-
sion that simulates the finite automaton in Figure 6 as theallphicomposition ofpg,’ p1, p2 and ps,
encapsulating the control actioester andleave, i.e., as

a{enteri.leave($i|ogi§3, nggZ}(p/O H P1 H P2 || p3) :

We now present the technique illustrated in the precedirgnge in full generality. LetF =
(S —,%,)) be a finite automaton, 1&= {s,...,s}, and letA = {a;,...,an} be the set of actions
occurring on transitions iff. We shall associate with an ACF{M(A, y) expressionps that has pre-
cisely one parallel componepi for every states in S. To allow a parallel component to gain and release
control, we use a collection @bntrol actions G assumed to be disjoint frody, and defined as

C={entef|1<i<njU{leavg;|1<i<n 1<k<m} .
Gaining and releasing control is modelled by the commuitingtinctiony satisfying:

ay if i =j;and

y(entefi,leankj):{ undefined otherwise.

For the specification of the AGR(A, y) expressiong; we need one more definition: fordi, j <nwe
denote byK; j the set of indices of actions occurring as the label on aititandrom s to sj, i.e.,

Kij=1{k|s s} .

Now we can specify the AGR (A, y) expressiong; (1 <i < n) by

=1 i . [i 1 .
D (enter (keZKi,i ay) (1%@ keZK” eave; (+)si))
jAi

14 Regular Expressions with Parallel Composition modulorBikirity

By (+ 1)% we mean that the summandl is optional; it is only included i§). The empty summation
denoted. (We let p; start with1 to get that the finite automaton associated vgthis isomorphic and
not just bisimilar withF.)

Note that, in ACR (A, Y), everypi has a unique outgoing transition; specificqﬂtherW p!, where
p/ denotes:

P=1(Y a)- (Y 3 leavai (+1)g,)) pi

kekK; i 0<J<n keKj
j#i
We now defineps = dc(pgp || p1ll -+ || pn). Clearly, the construction gbs works for every finite
automatort. The bijection defined bg — dc(po || -+« || Pi—1 || B/ || Piza || --- || Pn) is @an isomorphism

from F to the automaton associated wiph by the operational semantics. We shall refepptoas the
ACP; (A, y) expression associated wiih

Theorem 5.2. Let J be a finite automaton, and e be its associated AGR (A, y) expression. The
automaton associated wifl3- by the operational rules for AGR(A, y) is isomorphic to.

Corollary 5.3. For every finite automatofi there exists an instance of AGR.A, y) with a suitable finite
set of actionsA and a handshaking communication functipsuch that¥ is ACR; 1 (A, y)-expressible
up to isomorphism.

6 Conclusion

In this paper we have investigated the effect on the exmpessss of regular expressions modulo bisim-
ilarity if different forms of parallel composition are aditleWe have established an expressiveness hi-
erarchy that can be briefly summarised as: BRM) < PAy;(A) < U,ACP,;(A,Y). Furthermore,
while not every finite automaton can be expressed modulonibéity with a regular expression, it
suffices to add a form of AGPL, y)-style parallel composition, with handshaking commur@a&and
encapsulation, to get a language that is sufficiently espreso express all finite automata modulo
bisimilarity. This result should be contrasted with the Mkelown result from automata theory that every
non-deterministic finite automaton can be expressed widgalar expression modulo language equiva-
lence.

As an important tool in our proof, we have characterised thengly connected components in
BPAg,(A) and PA;(A). An interesting open question is whether the two given dtargations are
complete, in the sense that a finite automaton is expressilBA; ,(A) or PAj;(A) iff all its strongly
connected components satisfy our characterisation. Itrs) our characterisation would constitute
a useful complement to the characterisation[6f [1] and gertead to a more efficient algorithm for
deciding whether a non-deterministic automaton is exjrkess

In [4] it is proved that every finite transition system withantermediate termination can be denoted
in ACPg (A, y) up tobranchingbisimilarity [7], and that ACB(A, y) modulo (strong) bisimilarity is
strictly less expressive than AGRA, y). In contrast, we have established that every finite automato
(i.e., every finite transition system not excluding intediage termination) is denoted by an Ag;ﬁ’fl, Y)
expression. It follows that ACR (A, y) and ACR , (A, y) are equally expressive.

An interesting question that remains is whether it is pdegiomit constructions from AGR (A, y)
without losing expressiveness. We conjecture thgt) cannot be omitted without losing expressive-
ness: encapsulatirgin the ACR, , (A, y) expressiorl- (a-b)* -b|| ¢, which is used in Sectidd 4 to show
that PAy 1 (A) is less expressive than AGHRA,y), yields a transition system that we think cannot be
expressed in ACR, (A, y) without encapsulation.

Baeten, Luttik, Muller & Van Tilburg 15

Acknowledgement We thank Leonardo Vito and the other participants of the Rdbiviethods seminar
of 2007 for their contributions in an early stage of the reseor this paper.

References

[1] J. C. M. Baeten, F. Corradini & C. A. Grabmayer (200&)Characterization of Regular Expressions under
Bisimulation Journal of the ACMb4(2).

[2] J.C. M. Baeten & R. J. van Glabbeek (198F)erge and Termination in Process Algebta: Kesav V. Nori,
editor: FSTTCS Lecture Notes in Computer Scien2@7, Springer, pp. 153-172.

[3] J. A. Bergstra, |. Bethke & A. Ponse (1994process Algebra with Iteration and Nestinghe Computer
JournaB7(4), pp. 243-258.

[4] J. A.Bergstra, W. Fokkink & A. Ponse (200Brocess Algebra with Recursive Operatiolrs J. A. Bergstra,
A. J. Ponse & S. A. Smolka, editorstandbook of Process Algehfalsevier, pp. 333-389.

[5] J. A. Bergstra & J. W. Klop (1984)Process algebra for synchronous communicatidnformation and
Control1/3(60), pp. 109-137.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest & C. Stein (2pAhtroduction to Algorithms MIT Press, 2nd
edition.

[7]1 R. J. van Glabbeek & W. P. Weijland (19983ranching Time and Abstraction in Bisimulation Semantics
Journal of the ACMA3(3), pp. 555—-600.

[8] J .E. Hopcroft, R. Motwani & J. D. Ullman (2006)ntroduction to Automata Theory, Languages, and Com-
putation Pearson.

[9] C. J. P. Koymans & J. L. M. Vrancken (1983xtending process algebra with the empty proceskogic
Group Preprint Series 1, State University of Utrecht.

[10] R. Milner (1984): A Complete Inference System for a Class of Regular Behavialournal of Comput.
System Sci28(3), pp. 439-466.

[11] R. Milner (1989):Communication and ConcurrenclPrentice-Hall International, Englewood Cliffs.

[12] D. Park (1981)Concurrency and automata on infinite sequendesP. Deussen, editoProc. of the 5th GI
ConferenceLNCS 104, Springer-Verlag, Karlsruhe, Germany, pp. 183-1

[13] G. D. Plotkin (2004):A structural approach to operational semanticd Log. Algebr. Progran60-61, pp.
17-139.

[14] J. L. M. Vrancken (1997)The Algebra of Communicating Processes With Empty ProcHssor. Comput.
Sci. 177(2), pp. 287-328.

	1 Introduction
	2 Preliminaries
	3 Relative Expressiveness of BPA*01 and PA*01
	3.1 Strongly Connected Components in BPA*01
	3.2 BPA*01 is less expressive than PA*01

	4 Relative Expressiveness of PA*01 and ACP*01
	4.1 Strongly Connected Components in PA*01
	4.2 PA*01 is less expressive than ACP*01

	5 Every Finite Automaton is ACP*01-expressible
	6 Conclusion

