
S. Fröschle, F.D. Valencia (Eds.): Workshop on
Expressiveness in Concurrency 2010 (EXPRESS’10).
EPTCS 41, 2010, pp. 1–15, doi:10.4204/EPTCS.41.1

Expressiveness modulo Bisimilarity of Regular Expressions
with Parallel Composition

(Extended Abstract)

Jos C. M. Baeten
Eindhoven University of Technology, The Netherlands

j.c.m.baeten@tue.nl

Bas Luttik
Eindhoven University of Technology, The Netherlands

Vrije Universiteit Amsterdam, The Netherlands

s.p.luttik@tue.nl

Tim Muller
University of Luxembourg, Luxembourg

tim.muller@uni.lu

Paul van Tilburg
Eindhoven University of Technology, The Netherlands

p.j.a.v.tilburg@tue.nl

The languages accepted by finite automata are precisely the languages denoted by regular expres-
sions. In contrast, finite automata may exhibit behaviours that cannot be described by regular expres-
sions up to bisimilarity. In this paper, we consider extensions of the theory of regular expressions
with various forms of parallel composition and study the effect on expressiveness. First we prove
that adding pure interleaving to the theory of regular expressions strictly increases its expressiveness
modulo bisimilarity. Then, we prove that replacing the operation for pure interleaving by ACP-style
parallel composition gives a further increase in expressiveness. Finally, we prove that the theory
of regular expressions with ACP-style parallel composition and encapsulation is expressive enough
to express all finite automata modulo bisimilarity. Our results extend the expressiveness results ob-
tained by Bergstra, Bethke and Ponse for process algebras with (the binary variant of) Kleene’s star
operation.

1 Introduction

A well-known theorem by Kleene states that the languages accepted by finite automata are precisely the
languages denoted by a regular expression (see, e.g., [8]).Milner, in [10], showed how regular expres-
sions can be used to describebehaviourby defining an interpretation of regular expressions directly as
finite automata. He then observed that the process-theoretic counterpart of Kleene’s theorem —stating
that every finite automaton is described by a regular expression— fails: there exist finite automata whose
behaviours cannot faithfully, i.e., up to bisimilarity, bedescribed by regular expressions. Baeten, Corra-
dini and Grabmayer [1] recently found a structural propertyon finite automata that characterises those
that are denoted with a regular expression modulo bisimilarity. In this paper, we study to what extent the
expressiveness of regular expressions increases when various forms of parallel composition are added.

Our first contribution, in Section 3, is to show that adding anoperation for pure interleaving to
regular expressions strictly increases their expressiveness modulo bisimilarity. A crucial step in our
proof consists of characterising the strongly connected components in finite automata denoted by regular
expressions. The characterisation allows us to prove a property pertaining to the exit transitions from
such strongly connected components. If interleaving is added, then it is possible to denote finite automata
violating this property.

Our second contribution, in Section 4, is to show that replacing the operation for pure interleaving
by ACP-style parallel composition [5], which implements a form of synchronisation by communication

http://dx.doi.org/10.4204/EPTCS.41.1

2 Regular Expressions with Parallel Composition modulo Bisimilarity

between components, leads to a further increase in expressiveness. To this end, we first characterise the
strongly connected components in finite automata denoted byregular expressions with interleaving, and
deduce a property on the exit transitions from such stronglyconnected components. Then, we present an
expression in the theory of regular expressions with ACP-style parallel composition that denotes a finite
automaton violating this property.

Our third contribution, in Section 5, is to establish that adding ACP-style parallel composition and
encapsulation to the theory of regular expressions actually yields a theory in which every finite automaton
can be expressed up to isomorphism, and hence, since bisimilarity is coarser than isomorphism, also up
to bisimilarity. Every expression in the resulting theory,in turn, denotes a finite automaton, so this result
can be thought of as an alternative process-theoretic counterpart of Kleene’s theorem.

The results in this paper are inspired by the results of Bergstra, Bethke and Ponse pertaining to
the relative expressiveness of process algebras with a binary variant of Kleene’s star operation. In [3]
they establish an expressiveness hierarchy on the extensions of the process theories BPA(A), BPAδ (A),
PA(A), PAδ (A), ACP(A,γ), and ACPτ(A,γ) with binary Kleene star. The reason that their results are
based on extensions with the binary version of the Kleene star is that they want to avoid the process-
theoretic complications arising from the notion of intermediate termination (we say that a state in a finite
automaton is intermediately terminating if it is terminating but also admits a transition). Most of the
expressiveness results in [3] are included in [4], with moreelaborate proofs.

Casting our contributions mentioned above in process-theoretic terminology, we establish a strict
expressiveness hierarchy on the process theories BPA∗

0,1(A) (regular expressions) modulo bisimilarity,
PA∗

0,1(A) (regular expressions with interleaving) modulo bisimilarity and ACP∗0,1(A,γ) (regular expres-
sions with ACP-style parallel composition and encapsulation) modulo bisimilarity. The differences be-
tween the process theories BPAδ (A), PAδ (A) and ACP(A,γ) considered [3, 4] and the process theories
BPA∗

0,1(A), PA∗
0,1(A) and ACP∗0,1(A,γ) considered in this paper are as follows: we write0 for the con-

stant deadlock which is denoted byδ in [3, 4], we include the unary Kleene star instead of its binary
variant, and we include a constant1 denoting the successfully terminated process. The first difference
is, of course, cosmetic, and with the addition of the constant 1 the unary and binary variants of Kleene’s
star are interdefinable. So, our results pertaining to the relative expressiveness of BPA∗0,1(A), PA∗

0,1(A)
and ACP∗0,1(A,γ) extend the expressiveness hierarchy of [3, 4] with the constant1.

In [4] the expressiveness proofs are based on identifying cycles and exit transitions from these cycles.
There are two reasons why the proofs in [3] and [4] cannot easily be adapted to a setting with1. First, in
a setting with1 and Kleene star there are cycles without any exit transitions. Second, the inclusion of the
empty process1 gives intermediate termination, which, combined with the previously described different
behaviour of cycles, forces us to consider the more general structure of strongly connected component.

2 Preliminaries

In this section, we present the relevant definitions for the process theory ACP∗0,1(A,γ) and its subthe-
ories PA∗0,1(A) and BPA∗0,1(A). We give their syntax and operational semantics, and the notion of
(strong) bisimilarity. We also introduce some auxiliary technical notions that we need in the remain-
der of the paper, most notably that of strongly connected component. The expressions of the process
theory BPA∗0,1(A) are precisely the well-known regular expressions from the theory of automata and
formal languages, but we shall consider the automata associated with them modulo bisimilarity instead
of modulo language equivalence.

The process theory ACP∗0,1(A,γ) is parametrised by a non-empty setA of actions, and acommu-

Baeten, Luttik, Muller & Van Tilburg 3

nication functionγ onA, i.e., an associative and commutative binary partial operation γ : A×A⇀ A.
ACP∗

0,1(A,γ) incorporates a form of synchronisation between the components of a parallel composition
by allowing certain actions to engage in acommunicationresulting in another action. The communica-
tion functionγ then defines which actions may communicate and what is the result. The details of this
feature will become clear when we present the operational semantics of parallel composition.

The set of ACP∗0,1(A,γ) expressionsPACP∗
0,1(A,γ) is generated by the following grammar:

p ::= 0 | 1 | a | p· p | p+ p | p∗ | p ‖ p | ∂H(p) ,

with a ranging overA andH ranging over subsets ofA.
The process theory ACP(A,γ) (excluding the constants0 and 1, but including a constantδ with

exactly the same behaviour as0, and without the operation∗) originates with [5]. The extension of
ACP(A,γ) with a constant1 was investigated by [9, 2, 14] (in these articles, the constant was denoted
ε). The extension of ACP(A,γ) with the binary version of the Kleene star was first proposed in [3]. The
reader already familiar with the process theory ACP∗

0,1(A,γ) will have noticed that the operationsT (left
merge) and | (communication merge) are missing from our syntax definition. In [5], these operations
are included as auxiliary operations necessary for a finite axiomatisation of the theory. They do not,
however, add expressiveness in our setting with Kleene starinstead of a general form of recursion. We
have omitted them to achieve a more efficient presentation ofour results.

The constants0 and1 respectively stand for the deadlocked process and the successfully terminated
process, and the constantsa∈ A denote processes of which the only behaviour is to execute the action
a. An expression of the formp ·q is called asequential composition, an expression of the formp+q
is called analternative composition, and an expression of the formp∗ is called astar expression. An
expression of the formp ‖ q is called aparallel composition, and an expression of the form∂H(p) is
called anencapsulation.

From the names for the constructions in the syntax of ACP∗
0,1(A,γ), the reader probably has already

an intuitive understanding of the behaviour of the corresponding processes. We proceed to formalise
the operational behaviour by means of a collection of operational rules (see Table 1) in the style of
Plotkin’s Structural Operational Semantics [13]. Note howthe communication function in rule 14 is
employed to model a form of communication between parallel components: if one of the components
of a parallel composition can execute a transition labelledwith a, the other can execute a transition
labelled withb, and the communication functionγ is defined ona andb, then the parallel composition
can execute a transition labelled withγ(a,b). (It may help to think of the actiona as standing for the
event of sending some datumd, the actionb as standing for the event of receiving datumd, and the action
γ(a,b) as standing for the event that two components communicate datum d.) TheA-labelled transition
relation→ACP∗

0,1(A,γ) and the termination relation↓ACP∗
0,1(A,γ) onPACP∗

0,1(A,γ) are the least relations→ ⊆
PACP∗

0,1(A,γ)×A×PACP∗
0,1(A,γ) and↓ ⊆ PACP∗

0,1(A,γ) satisfying the rules in Table 1.
The tripleTACP∗

0,1(A,γ) = (PACP∗
0,1(A,γ),→ACP∗

0,1(A,γ),↓ACP∗
0,1(A,γ)), consisting of the ACP∗0,1(A,γ) ex-

pressions together with theA-labelled transition relation and the termination predicate associated with
them, is an example of anA-labelled transition system space. In general, anA-labelled transition system
space(S,→,↓) consists of a (non-empty) setS, the elements of which are calledstates, together with
anA-labelled transition relation→ ⊆ S×A×S and a subset↓ ⊆ S. We shall in this paper consider
two more examples of transition system spaces, obtained by restricting the syntax of ACP∗0,1(A,γ) and
making special assumptions about the communication function.

Next, we define theA-labelled transition system spaceTPA∗
0,1(A) = (PPA∗

0,1(A),→PA∗
0,1(A),↓PA∗

0,1(A))

corresponding with the process theory PA∗
0,1(A). The set of PA∗0,1(A) expressionsPPA∗

0,1(A) consists of

4 Regular Expressions with Parallel Composition modulo Bisimilarity

1
1↓

2
a a−→ 1

3
p a−→ p′

p+q a−→ p′
4

q a
−→ q′

p+q a−→ q′
5

p↓
p+q↓

6
q↓

p+q↓

7
p a
−→ p′

p·q a
−→ p′ ·q

8
p↓ q a−→ q′

p·q a
−→ q′

9
p↓ q↓

p·q↓
10

p a
−→ p′

p∗ a
−→ p′ · p∗

11
p∗↓

12
p a−→ p′

p ‖ q a−→ p′ ‖ q
13

q a
−→ q′

p ‖ q a−→ p ‖ q′
14

p↓ q↓

p ‖ q↓

15
p a
−→ p′ q b

−→ q′ γ(a,b) is defined

p ‖ q
γ(a,b)

−−−−→ p′ ‖ q′
16

p a
−→ p′ a 6∈ H

∂H(p)
a

−→ ∂H(p′)
17

p↓

∂H(p)↓

Table 1: Operational rules for ACP∗0,1(A,γ), with a∈A andH ⊆A.

the ACP∗0,1(A,γ) process expressions without occurrences of the construct∂H(). The PA∗0,1(A) transi-
tion relation→PA∗

0,1(A) onPPA∗
0,1(A) and the termination predicate↓PA∗

0,1(A) onPPA∗
0,1(A) are the transition

relation and termination predicate induced on PA∗
0,1(A) expressions by the operational rules in Table 1

minus the rules 15–17. Alternatively (and equivalently) the transition relation→PA∗
0,1(A) can be defined

as the restriction of the transition relation→ACP∗
0,1(A, /0), with /0 denoting the communication function that

is everywhere undefined, toPPA∗
0,1(A).

To define theA-labelled transition system spaceTBPA∗
0,1(A) = (PBPA∗

0,1(A),→BPA∗
0,1(A),↓BPA∗

0,1(A)) as-
sociated with the process theory BPA∗

0,1(A), let PBPA∗
0,1(A) consist of all PA∗0,1(A) expressions without

occurrences of the construct‖ . The BPA∗0,1(A) transition relation→BPA∗
0,1(A) and the BPA∗0,1(A) termi-

nation predicate↓BPA∗
0,1(A) are the transition relation and the termination predicate induced on BPA∗0,1(A)

expressions by the operational rules in Table 1 minus the rules 12–17. That is,→BPA∗
0,1(A) and↓BPA∗

0,1(A)

are obtained by restricting→ACP∗
0,1(A,γ) and↓ACP∗

0,1(A,γ) to PBPA∗
0,1(A).

Henceforth, we shall omit the subscripts ACP∗
0,1(A,γ), PA∗

0,1(A) and BPA∗0,1(A) from transition
relations and termination predicates whenever it is clear from the context which transition relation or
termination predicate is meant. Furthermore, we shall often use ACP∗0,1(A,γ), PA∗

0,1(A) and BPA∗0,1(A),
respectively, to denote the associated transition system spacesTACP∗

0,1(A,γ), TPA∗
0,1(A) andTBPA∗

0,1(A).

Let T = (S,→,↓) be anA-labelled transition system space. Ifs,s′ ∈ S, then we writes−→ s′ if there
existsa∈A such thats a

−→ s′, ands 6−→ s′ if there exists no sucha∈A. We denote by→+ the transitive
closure of→, and by→∗ the reflexive-transitive closure of→. If s−→∗ s′ then we say thats′ is reachable
from s; the set of all states reachable froms is denoted by[s]→. We say that a states is normedif there
existss′ such thats−→∗ s′ ands′↓. T is calledregular if [s]→ is finite for all s∈ S.

Lemma 2.1. The transition system spaces ACP∗
0,1(A,γ), PA∗

0,1(A), and BPA∗0,1(A) are all regular.

With every states in T we can associate anautomaton(or: transition system) ([s]→,→∩ ([s]→ ×
A× [s]→),↓ ∩ [s]→, s). Its states are the states reachable froms, its transition relation and termination
predicate are obtained by restricting→ and↓ accordingly, and the states is declared as theinitial stateof
the automaton. If a transition system space is regular, thenthe automaton associated with a state in it is
finite, i.e., it is a finite automaton in the terminology of automata theory. Thus, we get by Lemma 2.1 that
the operational semantics of ACP∗

0,1(A,γ), and, a fortiori, that of PA∗0,1(A) and BPA∗0,1(A), associates a
finite automaton with every process expression.

Baeten, Luttik, Muller & Van Tilburg 5

In automata theory, automata are usually considered as language acceptors and two automata are
deemed indistinguishable if they accept the same languages. Language equivalence is, however, arguably
too coarse in process theory, where the prevalent notion is bisimilarity [11, 12].

Definition 2.2. LetT1 =(S1,→1,↓1) andT2 =(S2,→2,↓2) be transition system spaces. A binary relation
R⊆ S1×S2 is abisimulationbetweenT1 andT2 if it satisfies, for alla∈A and for alls1 ∈ S1 ands2 ∈ S2

such thats1 R s2, the following conditions:

(i) if there existss′1 ∈ S1 such thats1
a

−→1 s′1, then there existss′2 ∈ S2 such thats2
a

−→2 s′2 ands′1 R s′2;

(ii) if there existss′2 ∈ S2 such thats2
a

−→2 s′2, then there existss′1 ∈ S1 such thats1
a

−→1 s′1 ands′1 R s′2;
and

(iii) s1↓1 if, and only if, s2↓2.

Statess1 ∈ S1 ands2 ∈ S2 arebisimilar (notation: s1 ↔ s2) if there exists a bisimulationR betweenT1

andT2 such thats1 R s2.

To achieve a sufficient level of generality, we have defined bisimilarity as a relation between tran-
sition system spaces; to obtain a suitable notion of bisimulation between automata one should add the
requirement that the initial states of the automata be related.

Based on the associated transition system spaces, we can nowdefine what we mean when some
transition system space is, modulo bisimilarity, less expressive than some other transition system space.

Definition 2.3. Let T1 andT2 be transition system spaces. We say thatT1 is less expressivethanT2

(notation:T1 ≺ T2) if every state inT1 is bisimilar to a state inT2, and, moreover, there is a state inT2

that isnot bisimilar to some state inT1.

When we investigate the expressiveness of ACP∗
0,1(A,γ), we want to be able to chooseγ . So,

we are actually interested in the expressiveness of the (disjoint) union of all transition system spaces
ACP∗

0,1(A,γ) with γ ranging over all communication functions. We denote this transition system space
by

⋃

γ ACP∗
0,1(A,γ). In this paper we shall then establish that BPA∗

0,1(A)≺PA∗
0,1(A)≺

⋃

γ ACP∗
0,1(A,γ).

We recall below the notion of strongly connected component (see, e.g., [6]) that will play an impor-
tant rôle in establishing that the above hierarchy of transition system spaces is strict.

Definition 2.4. A strongly connected componentin a transition system spaceT = (S,→,↓) is a maximal
subsetC of Ssuch thats−→∗ s′ for all s,s′ ∈C. A strongly connected componentC is trivial if it consists
of only one state, sayC= {s}, ands 6−→ s; otherwise, it isnon-trivial.

Note that every element of a transition system space is an element of precisely one strongly connected
component of that space. Furthermore, ifs is an element of a non-trivial strongly connected component,
thens−→+ s. Since in a strongly connected component from every elementevery other element can
be reached, we get as a corollary to Lemma 2.1 that strongly connected components in ACP∗0,1(A,γ),
PA∗

0,1(A) and BPA∗0,1(A) are finite.
Let T = (S,→,↓) be a transition system space, lets∈ S, and letC ⊆ S be a strongly connected

component inS. We say thatC is reachablefrom s if s−→∗ s′ for all s′ ∈C.

Lemma 2.5. Let T1 = (S1,→1,↓1) andT2 = (S2,→2,↓2) be regular transition system spaces, and let
s1 ∈ S1 ands2 ∈ S2 be such thats1 ↔ s2. If s1 is an element of a strongly connected componentC1 in
T1, then there exists a strongly connected componentC2 reachable froms2 satisfying that for alls′1 ∈C1

there existss′2 ∈C2 such thats′1 ↔ s′2.

6 Regular Expressions with Parallel Composition modulo Bisimilarity

3 Relative Expressiveness ofBPA∗
0,1(A) and PA∗

0,1(A)

In [3] it is proved that BPA∗0(A) is less expressive than PA∗0(A). The proof in [3] is by arguing that
the PA∗0(A) expression(a ·b)∗c ‖ d is not bisimilar with a BPA∗0(A) expression. (Actually, the PA∗0(A)
expression employed in [4] uses only a single actiona, i.e., considers the PA∗0(A) expression(a·a)∗a ‖
a; we use the actionsb, c andd for clarity.) An alternative and more general proof that thePA∗

0(A)
expression above is not expressible in BPA∗

0(A) is presented in [4]. There it is established that the PA∗
0(A)

expression above fails the following general property, which is satisfied by all BPA∗0(A)-expressible
automata:

If C is a cycle in an automaton associated with a BPA∗
0(A) expression, then there is at most

one statep∈C that has an exit transition.

(A cycle is a sequence(p1, . . . , pn) such thatpi −→ pi+1 (1≤ i < n) andpn−→ p1; an exit transition from
pi is a transitionpi −→ p′i such that no element of the cycle is reachable fromp′i .)

The following example shows that automata associated with BPA∗
0,1(A) expressions do not satisfy

the property above.

Example 3.1. Consider the automaton associated with the BPA∗
0,1(A) expression1· (a· (a+ 1))∗ ·b (see

Figure 1) with a cycle; both states on the cycle have ab-transition off the cycle.

1 · (a · (a+1))∗ ·b (a+1) · (a · (a+1))∗ ·b

1

a

b a
a

b

Figure 1: A transition system in BPA∗0,1(A) with a cycle with multiple exit transitions.

In this section we shall establish that BPA∗
0,1(A) is less expressive than PA∗0,1(A). As in [4] we

prove that BPA∗0,1(A)-expressible automata satisfy a general property that someautomaton expressible
in PA∗

0,1(A) fails to satisfy. We find it technically convenient, however, to base our relative expressiveness
proofs on the notion of strongly connected component, instead of cycle. Note, e.g., that every process
expression is an element of precisely one strongly connected component, while it may reside in more
than one cycle. Furthermore, ifp−→ q andp andq are in distinct strongly connected components, then
we can be sure thatp−→q is an exit transition, while ifp andq are on distinct cycles, then it may happen
that p is reachable fromq.

3.1 Strongly Connected Components inBPA∗
0,1(A)

We shall now establish that a non-trivial strongly connected component in BPA∗0,1(A) is either of the
form {p1 ·q∗, . . . , pn ·q∗} with pi (0≤ i ≤ n) reachable fromq and{p1, . . . , pn} not a strongly connected
component, or of the form{p1 · q, . . . , pn · q} where{p1, . . . , pn} is a strongly connected component.
To this end, let us first establish, by reasoning on the basis of the operational semantics, that process
expressions in a non-trivial strongly connected componentare necessarily sequential compositions; at
the heart of the argument will be the following measure on process expressions.

Definition 3.2. Let p a BPA∗0,1(A) expression; then #(p) is defined with recursion on the structure ofp
by the following clauses:

Baeten, Luttik, Muller & Van Tilburg 7

(i) #(0) = #(1) = 0, and #(a) = 1;

(ii) #(p·q) = 0 if q is a star expression, and #(p·q) = #(q)+1 otherwise;

(iii) #(p+q) = max{#(p),#(q)}+1; and

(iv) #(p∗) = 1.

We establish that #() is non-increasing over transitions, and, in fact, in most cases decreases.

Lemma 3.3. If p andp′ are BPA∗0,1(A) expressions such thatp−→+ p′, then #(p)≥ #(p′). Moreover, if
#(p) = #(p′), thenp= p1 ·q andp′ = p′1 ·q for somep1, p′1 andq.

Proof. First, the special case of the lemma in whichp−→ p′ is established with induction on derivations
according to the operational rules for BPA∗

0,1(A). Then, the general case of the lemma follows from the
special case with a straightforward induction on the lengthof a transition sequence fromp to p′.

Let P be a set of process expressions, and letq be a process expression; byP·q we denote the set of
process expressionsP·q= {p·q | p∈ P}.

Lemma 3.4. If C is a non-trivial strongly connected component in BPA∗
0,1(A), then there exist a set of

process expressionsC′ and a process expressionq such thatC=C′ ·q.

We proceed to give an inductive description of the non-trivial strongly connected components in
BPA∗

0,1(A). The basis for the inductive description is the following notion of basic strongly connected
component.

Definition 3.5. A non-trivial strongly connected componentC = {p1, . . . , pn} in BPA∗
0,1(A) is basic

if there exist BPA∗0,1(A) expressionsp′1, . . . , p
′
n and a BPA∗0,1(A) expressionq such thatpi = p′i · q∗

(1≤ i ≤ n) and{p′1, . . . , p
′
n} is not a strongly connected component in BPA∗

0,1(A).

Proposition 3.6. Let C be a non-trivial strongly connected component in BPA∗
0,1(A). Then eitherC is

basic, or there exist a non-trivial strongly connected componentC′ and a BPA∗0,1(A) expressionq such
thatC =C′ ·q.

Proof. By Lemma 3.4 there exists a set of statesC′ and a BPA∗0,1(A) expressionq such thatC =C′ ·q.
If C′ is a non-trivial strongly connected component, then the proposition follows, so it remains to prove
that if C′ is not a non-trivial strongly connected component, thenC is basic. Note that ifC′ is not a
strongly connected component, then there arep, p′ ∈ C′ such thatp 6−→+ p′. SinceC is a non-trivial
strongly connected component andC =C′ ·q, it holds thatp ·q−→+ p′ ·q. Using thatp 6−→+ p′, it can
be established with induction on the length of the transition sequence fromp·q to p′ ·q thatq−→+ p′ ·q.
It follows by Lemma 3.3 that #(q) ≥ #(p′ ·q), and therefore, according to the definition of #(), q must
be a star expression. We conclude thatC is basic.

3.2 BPA∗
0,1(A)≺ PA∗

0,1(A)

The crucial tool that will allow us to establish that BPA∗
0,1(A) is less expressive than PA∗0,1(A) will be

a special property of states with a transition out of their strongly connected component in BPA∗
0,1(A).

Roughly, ifC is a strongly connected component in BPA∗
0,1(A), then all states with a transition out ofC

have the same transitions out ofC.

Definition 3.7. Let C be a strongly connected component in the transition system spaceT = (S,→,↓)
and lets∈C. An exit transition froms is a pair(a,s′) such thats a−→ s′ ands′ 6∈C. We denote byET(s)
the set of allexit transitionsfrom s, i.e.,ET(s) = {(a,s′) | s a−→ s′∧s′ 6∈C}. An elements∈C is called
anexit stateif s↓ or there exists an exit transition froms.

8 Regular Expressions with Parallel Composition modulo Bisimilarity

Example 3.8. Consider the automaton associated with the BPA∗
0,1(A) expression1· (a·b· (c+ 1))∗ ·d,

(see Figure 2). It has a strongly connecting component with two exit states, both with one exit transition
(d,1).

1 · (a ·b · (c+1))∗ ·d b · (c+1) · (a ·b · (c+1))∗ ·d (c+1) · (a ·b · (c+1))∗ ·d

1

a b

c

a

d

d

Figure 2: A non-trivial strongly connected component in BPA∗
0,1(A) with multiple exit transitions.

Non-trivial strongly connected components in BPA∗
0,1(A) arise from executing the argument of a

Kleene star. An exit state of a strongly connected componentin BPA∗
0,1(A) is then a state in which the

execution has the option to terminate. Due to the presence of0 in BPA∗
0,1(A) this is, however, not the

only type of exit state in BPA∗0,1(A) strongly connected components.

Example 3.9. Consider the automaton associated with the BPA∗
0,1(A) expression1 · (a · ((b ·0)+ 1))∗ ·

c (see Figure 3). The strongly connected component contains two exit states and two (distinct) exit
transitions. One of these exit transitions leads to a deadlocked state.

1 · (a · ((b ·0)+1))∗ ·c ((b ·0)+1) · (a · ((b ·0)+1))∗ ·c

0 · (a · ((b ·0)+1))∗ ·c1

a

b

c

ac

Figure 3: A strongly connected component with normed exit transitions.

The preceding example illustrates that the special property of strongly connected components in
BPA∗

0,1(A) that we are after, should exclude from consideration any exit transition arising from an oc-
currence of0. This is achieved in the following definitions.

Definition 3.10. Let C be a strongly connected component and lets∈C. An exit transition(a,s′) from
s is normedif s′ is normed. We denote byETn(s) the set of normed exit transitions froms.

An exit states∈C is alive if s↓ or there exists a normed exit transition froms.

Lemma 3.11. If p·q∗−→∗ r, then either there existsp′ such thatp−→∗ p′ andr = p′ ·q∗ or there exist
p′ andq′ such thatp−→∗ p′, p′↓, q−→∗ q′, andr = q′ ·q∗.

Lemma 3.12. If C is a basic strongly connected component, thenETn(p) = /0 for all p∈C.

Lemma 3.13. LetC be a non-trivial strongly connected component in BPA∗
0,1(A), let p∈C, and letq be

a BPA∗0,1(A) process expression such thatC ·q is a strongly connected component. Thenp·q is an alive
exit state inC ·q iff p is an alive exit state inC andq is normed.

For a characterisation of the set of normed exit transitionsof a sequential composition, it is convenient
to have the following notation: ifE is a set of exit transitionsE and p is a BPA∗0,1(A) expression, then
E · p is defined byE · p= {(a,q· p) | (a,q) ∈ E}.

Baeten, Luttik, Muller & Van Tilburg 9

Lemma 3.14. LetC be a non-trivial strongly connected component in BPA∗
0,1(A), let p∈C, and letq be

a normed BPA∗0,1(A) process expression such thatC ·q is a strongly connected component. Then

ETn(p·q) =

{

ETn(p) ·q∪{(a, r) | r 6∈C ·q∧ r is normed∧q a−→ r} if p↓; and
ETn(p) ·q if p6 ↓.

Proposition 3.15. Let C be a non-trivial strongly connected component in BPA∗
0,1(A). If p1 andp2 are

alive exit states inC, thenETn(p1) = ETn(p2).

Proof. Suppose thatp1 andp2 are alive exit states; we prove by induction on the structureof non-trivial
strongly connected components in BPA∗

0,1(A) as given by Proposition 3.6 thatETn(p1) = ETn(p2) and
p1↓ iff p2↓.

If C is basic, then by Lemma 3.12ETn(p1) = /0= ETn(p2), and, sincep1 andp2 are alive exit states,
it also follows from this that bothp1↓ andp2↓.

Suppose thatC =C′ ·q, with C′ a non-trivial strongly connected component, and letp′1, p
′
2 ∈ C′ be

such thatp1 = p′1 ·q andp2 = p′2 ·q. Sincep1 andp2 are alive exit states, by Lemma 3.13 so arep′1 and
p′2. Hence, by the induction hypothesis,ETn(p′1) = ETn(p′2) and p′1↓ iff p′2↓. From the latter it follows
that p1↓ iff p2↓. We now apply Lemma 3.14: if, on the one hand,p1↓ andp2↓, then

ETn(p1) = ETn(p
′
1) ·q∪{(a, r) | r 6∈C∧∃r ′. q a−→ r −→∗ r ′↓}

= ETn(p
′
2) ·q∪{(a, r) | r 6∈C∧∃r ′. q a

−→ r −→∗ r ′↓} = ETn(p2) ,

and if, on the other hand,p16 ↓ andp26 ↓, thenETn(p1) = ETn(p′1) ·q= ETn(p′2) ·q= ETn(p2).

p0 p1

p2 p3

a

b

a

b

c c

Figure 4: A PA∗0,1(A)-expressible automaton that is not expressible in BPA∗
0,1(A).

The PA∗0,1(A) expressionp0 = 1 · (a ·b)∗ ‖ c gives rise to the automaton shown in Figure 4. It has
a strongly connected componentC = {p0, p1} of which the alive exit states have different normed exit
transitions. Hence, by Proposition 3.15,p0 is not BPA∗0,1(A)-expressible.

Theorem 3.16.BPA∗
0,1(A) is less expressive than PA∗0,1(A).

4 Relative Expressiveness ofPA∗
0,1(A) and ACP∗

0,1(A,γ)

The proof in [4] that PA∗δ (A) is less expressive than ACP∗(A,γ) uses the same expression as the one
showing that BPA∗δ (A) is less expressive than PA∗δ (A), but it presupposes thatγ(c,d) = e. It is claimed
that the associated automaton fails the following general property of cycles in PA∗δ (A):

If C is a cycle reachable from a PA∗0(A) process term and there is a state inC with a transition
to a terminating state, then all other states inC have only successors inC.

The claim, however, is incorrect, as illustrated by the following example. (We present the example in the
syntax of PA∗0,1(A), but it has a straightforward translation into the syntax ofPA∗

δ (A).)

10 Regular Expressions with Parallel Composition modulo Bisimilarity

Example 4.1. Consider the PA∗0,1(A) expression(a· (b+b·b))∗ ·d, from which the cycle

C= {1· (a· (b+b·b))∗ ·d, (b+b·b) · (a· (b+b·b))∗ ·d}

is reachable. Clearly, the first expression inC can perform ad-transition to1. Then, according to the
property above, every other expression only has transitions to expressions inC. However,

(b+b·b) · (a· (b+b·b))∗ ·d b
−→ b· (a· (b+b·b))∗ ·d 6∈C .

If we replace, in the property above, the notion of cycle by the notion of strongly connected compo-
nent, then the resulting property does hold for PA∗

0(A), but it still fails for PA∗0,1(A).

Example 4.2. Consider the PA∗0,1(A) expression(a · b)∗ ‖ cit gives rise to the following non-trivial
strongly connected component:{1 · (a ·b)∗ ‖ c, b · (a ·b)∗ ‖ c}. The expression1 · (a ·b)∗ ‖ c can do a
c-transition to1· (a·b)∗ ‖ 1, for which the termination predicate holds, but at the same timeb· (a·b)∗ ‖ c
has an exit transition(c,b· (a·b)∗ ‖ 1).

In this section we shall establish that PA∗
0,1(A) is less expressive than ACP∗

0,1(A,γ). To this end, we
apply the same method as in Section 3. First, we syntactically characterise the non-trivial strongly con-
nected components associated with PA∗

0,1(A) expressions. Then, we conclude that a weakened version
of the aforementioned property for strongly connected components holds in PA∗0,1(A), and present an
ACP∗

0,1(A,γ) expression that does not satisfy it.

4.1 Strongly Connected Components inPA∗
0,1(A)

To give a syntactic characterisation of the non-trivial strongly connected components in PA∗
0,1(A), we

reason again about the operational semantics. First, we extend the measure #() from Section 3 to
PA∗

0,1(A) expressions.

Definition 4.3. Let p be a PA∗0,1(A) expression; #(p) is defined with recursion on the structure ofp by
the clauses (i)–(iv) in Definition 3.2 with the following clause added:

(v) #(p ‖ q) = 0.

With the extension, the non-increasing measure #() still in most cases decreases over transitions.

Lemma 4.4. If p andp′ are PA∗0,1(A) expressions such thatp−→+ p′, then #(p) ≥ #(p′). Moreover, if
#(p) = #(p′), then eitherp= p1 ·q and p′ = p′1 ·q, or p = p1 ‖ p2 and p′ = p′1 ‖ p′2 for some process
expressionsp1, p2, p′1, p′2, andq.

Lemma 4.5. Let p, q and r be PA∗0,1(A) process expressions such thatp ‖ q−→∗ r. Then there exist
PA∗

0,1(A) process expressionsp′ andq′ such thatr = p′ ‖ q′, p−→∗ p′ andq−→∗ q′.

Let P and Q be sets of process expressions; byP ‖ Q we denote the set of process expressions
P ‖ Q= {p ‖ q | p∈ P∧q∈ Q}. We also writeP ‖ q andp ‖ Q for P ‖ {q} and{p} ‖ Q, respectively.

The proof of the following lemma, characterising the syntactic form of non-trivial strongly connected
components in PA∗0,1(A), is a straightforward adaptation and extension of the proofof Lemma 3.4, using
Lemma 4.4 and Lemma 4.5 instead of Lemma 3.3.

Lemma 4.6. If C is a non-trivial strongly connected component in PA∗
0,1(A), then either there exist a set

of process expressionsC′ and a process expressionq such thatC=C′ ·q, or there exist strongly connected
componentsC1 andC2 in PA∗

0,1(A), at least one of them non-trivial, such thatC=C1 ‖C2.

Baeten, Luttik, Muller & Van Tilburg 11

The notion ofbasicstrongly connected component in PA∗
0,1(A) is obtained from Definition 3.5 by

replacing BPA∗0,1(A) by PA∗
0,1(A) everywhere in the definition. In Proposition 3.6 we gave an inductive

characterisation of non-trivial strongly connected components in BPA∗0,1(A). There is a similar inductive
characterisation of non-trivial strongly connected components in PA∗0,1(A), obtained by adding a case
for parallel composition.

Proposition 4.7. Let C be a non-trivial strongly connected component in PA∗
0,1(A). Then one of the

following holds:

(i) C is a basic strongly connected component; or

(ii) there exist a non-trivial strongly connected component C′ and a PA∗0,1(A) expressionq such that
C=C′ ·q; or

(iii) there exist strongly connected componentsC1 andC2, at least one of them non-trivial, such that
C=C1 ‖C2.

Note that, in the above proposition, one of the strongly connected componentsC1 andC2 may be
trivial in which case it consists of a single PA∗

0,1(A) expression.

4.2 PA∗
0,1(A)≺ ACP∗

0,1(A,γ)

In Section 3 we deduced, from our syntactic characterisation of strongly connected components in
BPA∗

0,1(A), the property that all alive exit states of a strongly connected component have the same sets
of normed exit transitions. This property may fail for strongly connected components in PA∗

0,1(A): the
automaton in Figure 4 is PA∗0,1(A)-expressible, but the alive exit statesp0 and p1 of the strongly con-
nected component{p0, p1} have different normed exit transitions. Note, however, that these normed
exit transitions both end up in another strongly connected component{p2, p3}. It turns out that we can
relax the requirement on normed exit transitions from strongly connected components in BPA∗

0,1(A) to
get a requirement that holds for strongly connected components in PA∗0,1(A). The idea is to identify exit
transitions if they have the same action and end up in the samestrongly connected component.

Definition 4.8. Let T = (S,→,↓) be anA-labelled transition system space. We define a binary relation
∼ onA×Sby (a,s) ∼ (a′,s′) iff a= a′ andsands′ are in the same strongly connected component inT.

Since the relation of being in the same strongly connected component is an equivalence on states in
a transition system space, it is clear that∼ is an equivalence relation on exit transitions. The following
lemma will give some further properties of the relation∼ associated with PA∗0,1(A).

Lemma 4.9. Let p andq be PA∗0,1(A) expressions, and leta andb be actions. If(a, p) ∼ (b,q), then
(a, p· r) ∼ (b,q· r), (a, p ‖ r)∼ (b,q ‖ r), and(a, r ‖ p)∼ (b, r ‖ q).

To formulate a straightforward corollary of this lemma we use the following notation: ifE is a set of
exit transitionsE andp is a PA∗0,1(A) expression, thenE · p, E ‖ p andp ‖ E are defined by

E ‖ p= {(a,q ‖ p) | (a,q) ∈ E} , andp ‖ E = {(a, p ‖ q) | (a,q) ∈ E} .

We are now in a position to establish a property of strongly connected components in PA∗0,1(A)
that will allow us to prove that PA∗0,1(A) is less expressive than ACP∗

0,1(A,γ): a strongly connected
componentC in PA∗

0,1(A) always has a special exit state from which, up to∼, all exit transitions are
enabled.

12 Regular Expressions with Parallel Composition modulo Bisimilarity

Lemma 4.10. Let C1 andC2 be sets of PA∗0,1(A) expressions. ThenC1 ‖ C2 is a strongly connected
component iff bothC1 andC2 are strongly connected components. Moreover,C1 ‖C2 is non-trivial iff at
least one ofC1 andC2 is non-trivial.

Lemma 4.11. LetC1 andC2 be a strongly connected components in PA∗
0,1(A), both with alive exit states.

ThenC1 ‖C2 is a strongly connected component with alive exit states too, and, for allp∈C1 andq∈C2,
ETn(p ‖ q) = (ETn(p) ‖ q)∪ (p ‖ ETn(q)).

To formulate the special property of strongly connected components in PA∗0,1(A) that will allow us
to prove that some ACP∗0,1(A,γ) expressions do not have a counterpart in PA∗

0,1(A), we need the notion
of maximal alive exit state.

Definition 4.12. LetT = (S,→,↓) be anA-labelled transition system space, let∼⊆A×Sbe the equiv-
alence relation associated withT according to Definition 4.8, letC be a strongly connected component
in T, and lets∈C be an alive exit state. We say thats is maximal(modulo∼) if for all alive exit states
s′ ∈C and for alle′ ∈ ETn(s′) there exists an exit transitione∈ ETn(s) such thate∼ e′.

The following proposition establishes the property with which we shall prove that PA∗0,1(A) is less
expressive than ACP∗0,1(A,γ).

Proposition 4.13. If C is a strongly connected component in PA∗
0,1(A) andC has an alive exit state, then

C has a maximal alive exit state.

p0 p1p4

p2 p3p5

a

b

a

b

d

d

c cc e

Figure 5: An ACP∗0,1(A,γ)-expressible automaton that is not expressible in PA∗
0,1(A).

Supposeγ(b,c) = e; then the ACP∗0,1(A,γ) expressionp0 = 1· (a·b)∗ ·d ‖ c gives rise to the automa-
ton shown in Figure 5. It has a strongly connected componentC = {p0, p1}, and none of its alive exit
states is maximal. Hence, by Proposition 4.13,p0 is not PA∗0,1(A)-expressible.

Theorem 4.14.PA∗
0,1(A) is less expressive than

⋃

γ ACP∗
0,1(A,γ).

5 Every Finite Automaton is ACP∗
0,1(A,γ)-expressible

Milner observed in [10] that there exist finite automata thatare not bisimilar to the finite automaton
associated with a BPA∗0,1(A) expression. Our proof of Theorem 3.16 has Milner’s observation as an im-
mediate consequence: the finite automaton associated with the PA∗0,1(A) expression used in the proof is
not BPA∗0,1(A)-expressible. Similarly, by Theorem 4.14, there are finite automata that are not expressible
in PA∗

0,1(A).
In this section we shall prove that every finite automatonis expressible in ACP∗0,1(A,γ), for suitable

choices ofA andγ , even up to isomorphism. Before we formally prove the result, let us first explain
the idea informally, and illustrate it with an example. The ACP∗0,1(A,γ) expression that we shall asso-
ciate with a finite automaton will have one parallel component per state of the automaton, representing
the behaviour in that state (i.e., which outgoing transitions it has to which other states and whether it is
terminating). At any time, one of those parallel components, the one corresponding with the “current

Baeten, Luttik, Muller & Van Tilburg 13

state,” has control. Ana-transition from that current state to a next state corresponds with a communica-
tion between two components. We make essential use of ACP∗

0,1(A,γ)’s facility to let the actiona be the
result of communication.

Example 5.1. Consider the finite automaton in Figure 6.

s0 s1

s2 s3

a1

a0

a1
a2a0

a1

a2a0

a1

Figure 6: A finite automaton.

We associate with every statesi an ACP∗0,1(A,γ) expressionpi as follows:

p0 =
(

enter0 · (leave0,1+ leave1,1)
)

∗ , p2 =
(

enter2 · (leave0,0+ leave1,3+1)
)

∗ ,

p1 =
(

enter1 ·a1
∗ · (leave2,2)

)

∗ , p3 =
(

enter3 ·0
)

∗ .

Everypi has anenteri transition to gain control, and by executing aleavek, j it may then release control to
p j with actionak as effect. We define the communication function so that anenteri action communicates
with a leavek,i action, resulting in the actionak. Loops in the automaton (such as the loop on states1)
require special treatment as they should not release control.

Let p′0 be the result of executing theenter0-transition fromp0. We define the ACP∗0,1(A,γ) expres-
sion that simulates the finite automaton in Figure 6 as the parallel composition ofp′0, p1, p2 and p3,
encapsulating the control actionsenteri andleavek,i , i.e., as

∂{enteri ,leavek,i |0≤i≤3, 0≤k≤2}(p
′
0 ‖ p1 ‖ p2 ‖ p3) .

We now present the technique illustrated in the preceding example in full generality. LetF =
(S,→,s0,↓) be a finite automaton, letS= {s0, . . . ,sn}, and letA = {a1, . . . ,am} be the set of actions
occurring on transitions inF. We shall associate withF an ACP∗0,1(A,γ) expressionpF that has pre-
cisely one parallel componentpi for every statesi in S. To allow a parallel component to gain and release
control, we use a collection ofcontrol actions C, assumed to be disjoint fromA, and defined as

C= {enteri | 1≤ i ≤ n}∪{leavek,i | 1≤ i ≤ n, 1≤ k≤ m} .

Gaining and releasing control is modelled by the communication functionγ satisfying:

γ(enteri, leavek, j) =

{

ak if i = j; and
undefined otherwise.

For the specification of the ACP∗0,1(A,γ) expressionspi we need one more definition: for 1≤ i, j ≤ n we
denote byKi, j the set of indices of actions occurring as the label on a transition from si to sj , i.e.,

Ki, j = {k | si
ak−−→ sj} .

Now we can specify the ACP∗0,1(A,γ) expressionspi (1≤ i ≤ n) by

pi = 1·
(

enteri · (∑
k∈Ki,i

ak)
∗ · (∑

1≤ j≤n
j 6=i

∑
k∈Ki, j

leavek,i (+ 1)si↓
)
)

∗
.

14 Regular Expressions with Parallel Composition modulo Bisimilarity

By (+ 1)si↓
we mean that the summand+ 1 is optional; it is only included ifsi↓. The empty summation

denotes0. (We let pi start with1 to get that the finite automaton associated withpF is isomorphic and
not just bisimilar withF.)

Note that, in ACP∗0,1(A,γ), everypi has a unique outgoing transition; specificallypi
enteri−−−−→ p′i , where

p′i denotes:

p′i = (1· (∑
k∈Ki,i

ak)
∗ · (∑

0≤ j≤n
j 6=i

∑
k∈Ki, j

leavek,i (+ 1)si↓
)) · pi .

We now definepF = ∂C(p′0 ‖ p1 ‖ · · · ‖ pn). Clearly, the construction ofpF works for every finite
automatonF. The bijection defined bysi 7→ ∂C(p0 ‖ · · · ‖ pi−1 ‖ p′i ‖ pi+1 ‖ · · · ‖ pn) is an isomorphism
from F to the automaton associated withpF by the operational semantics. We shall refer topF as the
ACP∗

0,1(A,γ) expression associated withF.
Theorem 5.2. Let F be a finite automaton, and letpF be its associated ACP∗0,1(A,γ) expression. The
automaton associated withpF by the operational rules for ACP∗0,1(A,γ) is isomorphic toF.
Corollary 5.3. For every finite automatonF there exists an instance of ACP∗

0,1(A,γ) with a suitable finite
set of actionsA and a handshaking communication functionγ such thatF is ACP∗0,1(A,γ)-expressible
up to isomorphism.

6 Conclusion

In this paper we have investigated the effect on the expressiveness of regular expressions modulo bisim-
ilarity if different forms of parallel composition are added. We have established an expressiveness hi-
erarchy that can be briefly summarised as: BPA∗

0,1(A) ≺ PA∗
0,1(A) ≺

⋃

γ ACP∗
0,1(A,γ). Furthermore,

while not every finite automaton can be expressed modulo bisimilarity with a regular expression, it
suffices to add a form of ACP(A,γ)-style parallel composition, with handshaking communication and
encapsulation, to get a language that is sufficiently expressive to express all finite automata modulo
bisimilarity. This result should be contrasted with the well-known result from automata theory that every
non-deterministic finite automaton can be expressed with a regular expression modulo language equiva-
lence.

As an important tool in our proof, we have characterised the strongly connected components in
BPA∗

0,1(A) and PA∗0,1(A). An interesting open question is whether the two given characterisations are
complete, in the sense that a finite automaton is expressiblein BPA∗

0,1(A) or PA∗
0,1(A) iff all its strongly

connected components satisfy our characterisation. If so,then our characterisation would constitute
a useful complement to the characterisation of [1] and perhaps lead to a more efficient algorithm for
deciding whether a non-deterministic automaton is expressible.

In [4] it is proved that every finite transition system without intermediate termination can be denoted
in ACP∗

0,τ(A,γ) up to branchingbisimilarity [7], and that ACP∗0(A,γ) modulo (strong) bisimilarity is
strictly less expressive than ACP∗

0,τ(A,γ). In contrast, we have established that every finite automaton
(i.e., every finite transition system not excluding intermediate termination) is denoted by an ACP∗

0,1(A,γ)
expression. It follows that ACP∗0,1(A,γ) and ACP∗0,1,τ (A,γ) are equally expressive.

An interesting question that remains is whether it is possible to omit constructions from ACP∗0,1(A,γ)
without losing expressiveness. We conjecture that∂H() cannot be omitted without losing expressive-
ness: encapsulatingc in the ACP∗0,1(A,γ) expression1· (a·b)∗ ·b‖ c, which is used in Section 4 to show
that PA∗0,1(A) is less expressive than ACP∗

0,1(A,γ), yields a transition system that we think cannot be
expressed in ACP∗0,1(A,γ) without encapsulation.

Baeten, Luttik, Muller & Van Tilburg 15

Acknowledgement We thank Leonardo Vito and the other participants of the Formal Methods seminar
of 2007 for their contributions in an early stage of the research for this paper.

References

[1] J. C. M. Baeten, F. Corradini & C. A. Grabmayer (2007):A Characterization of Regular Expressions under
Bisimulation. Journal of the ACM54(2).

[2] J. C. M. Baeten & R. J. van Glabbeek (1987):Merge and Termination in Process Algebra. In: Kesav V. Nori,
editor:FSTTCS, Lecture Notes in Computer Science287, Springer, pp. 153–172.

[3] J. A. Bergstra, I. Bethke & A. Ponse (1994):Process Algebra with Iteration and Nesting. The Computer
Journal37(4), pp. 243–258.

[4] J. A. Bergstra, W. Fokkink & A. Ponse (2001):Process Algebra with Recursive Operations. In: J. A. Bergstra,
A. J. Ponse & S. A. Smolka, editors:Handbook of Process Algebra, Elsevier, pp. 333–389.

[5] J. A. Bergstra & J. W. Klop (1984):Process algebra for synchronous communication. Information and
Control1/3(60), pp. 109–137.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest & C. Stein (2001): Introduction to Algorithms. MIT Press, 2nd
edition.

[7] R. J. van Glabbeek & W. P. Weijland (1996):Branching Time and Abstraction in Bisimulation Semantics.
Journal of the ACM43(3), pp. 555–600.

[8] J .E. Hopcroft, R. Motwani & J. D. Ullman (2006):Introduction to Automata Theory, Languages, and Com-
putation. Pearson.

[9] C. J. P. Koymans & J. L. M. Vrancken (1985):Extending process algebra with the empty processε. Logic
Group Preprint Series 1, State University of Utrecht.

[10] R. Milner (1984): A Complete Inference System for a Class of Regular Behaviours. Journal of Comput.
System Sci.28(3), pp. 439–466.

[11] R. Milner (1989):Communication and Concurrency. Prentice-Hall International, Englewood Cliffs.

[12] D. Park (1981):Concurrency and automata on infinite sequences. In: P. Deussen, editor:Proc. of the 5th GI
Conference, LNCS 104, Springer-Verlag, Karlsruhe, Germany, pp. 167–183.

[13] G. D. Plotkin (2004):A structural approach to operational semantics. J. Log. Algebr. Program.60-61, pp.
17–139.

[14] J. L. M. Vrancken (1997):The Algebra of Communicating Processes With Empty Process. Theor. Comput.
Sci.177(2), pp. 287–328.

	1 Introduction
	2 Preliminaries
	3 Relative Expressiveness of BPA*01 and PA*01
	3.1 Strongly Connected Components in BPA*01
	3.2 BPA*01 is less expressive than PA*01

	4 Relative Expressiveness of PA*01 and ACP*01
	4.1 Strongly Connected Components in PA*01
	4.2 PA*01 is less expressive than ACP*01

	5 Every Finite Automaton is ACP*01-expressible
	6 Conclusion

