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Abstract. We propose reactive Turing machines (RTMs), extending
classical Turing machines with a process-theoretical notion of interaction.
We show that every effective transition system is simulated modulo
branching bisimilarity by an RTM, and that every computable transition
system with a bounded branching degree is simulated modulo divergence-
preserving branching bisimilarity. We conclude from these results that
the parallel composition of (communicating) RTMs can be simulated
by a single RTM. We prove that there exist universal RTMs modulo
branching bisimilarity, but these essentially employ divergence to be able
to simulate an RTM of arbitrary branching degree. We also prove that
modulo divergence-preserving branching bisimilarity there are RTMs
that are universal up to their own branching degree. Finally, we establish
a correspondence between RTMs and the process theory TCPτ .

1 Introduction

The Turing machine [19] is widely accepted as a computational model suitable for
exploring the theoretical boundaries of computing. Motivated by the existence of
universal Turing machines, many textbooks on the theory of computation present
the Turing machine not just as a theoretical model to explain which functions
are computable, but as an accurate conceptual model of the computer. There is,
however, a well-known limitation to this view. A Turing machine operates from
the assumptions that: (1) all input it needs for the computation is available on
the tape from the very beginning; (2) it performs a terminating computation;
and (3) it leaves the output on the tape at the very end. Thus, the notion of
Turing machine abstracts from two key ingredients of computing: interaction
and non-termination. Nowadays, most computing systems are so-called reactive
systems [13], systems that are generally not meant to terminate and consist of
computing devices that interact with each other and with their environment.

Concurrency theory emerged from the early work of Petri [16] and has now
developed into a mature theory of reactive systems. We mention three of its
contributions particularly relevant for our work. Firstly, it installed the notion
of transition system as the prime mathematical model to represent discrete
behaviour. Secondly, it offered the insight that language equivalence is too coarse
in a setting with interacting automata; instead one should consider automata up
to some form of bisimilarity. Thirdly, it yielded many algebraic process calculi
facilitating the formal specification and verification of reactive systems.
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In this paper we propose a notion of reactive Turing machine (RTM),
extending the classical notion of Turing machine with interaction in the style of
concurrency theory. The extension consists of a facility to declare every transition
to be either observable, by labelling it with an action symbol, or unobservable,
by labelling it with τ . Typically, a transition labelled with an action symbol
models an interaction of the RTM with its environment (or some other RTM),
while a transition labelled with τ refers to an internal computation step. Thus, a
conventional Turing machine can be regarded as a special kind of RTM in which
all transitions are declared unobservable by labelling them with τ .

The semantic object associated with a conventional Turing machine is either
the function that it computes, or the formal language that it accepts. The
semantic object associated with an RTM is a behaviour, formally represented by
a transition system. A function is said to be effectively computable if it can be
computed by a Turing machine. By analogy, we say that a behaviour is effectively
executable if it can be exhibited by an RTM. In concurrency theory, behaviours
are usually considered modulo a suitable behavioural equivalence. In this paper
we shall mainly use (divergence-preserving) branching bisimilarity [11], which is
the finest behavioural equivalence in Van Glabbeek’s spectrum (see [9]).

In Sect. 3 we set out to investigate the expressiveness of RTMs up to
divergence-preserving branching bisimilarity. We establish that every com-
putable transition system with a bounded branching degree can be simulated, up
to divergence-preserving branching bisimilarity, by an RTM. If the divergence-
preservation requirement is dropped, even every effective transition system can
be simulated. These results will then allow us to conclude that the behaviour of
a parallel composition of RTMs can be simulated on a single RTM.

In Sect. 4 we define a suitable notion of universality for RTMs and investigate
the existence of universal RTMs. We shall find that there are some subtleties
pertaining to the branching degree bound associated with each RTM. Up to
divergence-preserving branching bisimilarity, an RTM can at best simulate other
RTMs with the same or a lower bound on their branching degree. If divergence-
preservation is not required, however, then universal RTMs do exist.

In Sect. 5, we consider the correspondence between RTMs and the process
theory TCPτ . We establish that every executable behaviour is, again up to
divergence-preserving branching bisimilarity, definable by a finite recursive
TCPτ -specification [1]. Recursive specifications are the concurrency-theoretic
counterparts of grammars in the theory of formal languages. Thus, the result in
Sect. 5 may be considered as the process-theoretic version of the correspondence
between Turing machines and unrestricted grammars.

Several extensions of Turing machines with some form of interaction have
been proposed in the literature, already by Turing in [20], and more recently
in [6,12,21]. The goal in these works is mainly to investigate to what extent
interaction may have a beneficial effect on the power of sequential computation.
The focus remains on the computational aspect, and interaction is not treated as
a first-class citizen. Our goal, instead, is to achieve integration of automata and
concurrency theory that treats computation and interactivity on equal footing.
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2 Reactive Turing Machines

We fix a finite set A of action symbols that we shall use to denote the observable
events of a system. An unobservable event will be denoted with τ , assuming that
τ 6∈ A; we shall henceforth denote the set A∪{τ} by Aτ . We also fix a finite set
D of data symbols. We add to D a special symbol � to denote a blank tape cell,
assuming that � 6∈ D; we denote the set D ∪ {�} of tape symbols by D�.

Definition 1. A reactive Turing machine (RTM) M is a quadruple (S,→, ↑, ↓)
consisting of a finite set of states S, a distinguished initial state ↑ ∈ S, a subset
of final states ↓ ⊆ S, and a (D�×Aτ ×D�×{L,R})-labelled transition relation

→ ⊆ S ×D� ×Aτ ×D� × {L,R} × S .

An RTM is deterministic if (s, d, a, e1,M1, t1) ∈ → and (s, d, a, e2,M2, t2) ∈ →
implies that e1 = e2, t1 = t2 and M1 = M2 for all s, t1, t2 ∈ S, d, e1, e2 ∈ D�,
a ∈ Aτ , and M1,M2 ∈ {L,R}, and, moreover, (s, d, τ, e1,M1, t1) ∈ → implies
that there do not exist a 6= τ , e2,M2, t2 such that (s, d, a, e2,M2, t2) ∈ →

If (s, d, a, e,M, t) ∈ →, we write s
a[d/e]M
−−−−−−→ t. The intuitive meaning of such

a transition is that whenever M is in state s and d is the symbol currently read
by the tape head, then it may execute the action a, write symbol e on the tape
(replacing d), move the read/write head one position to the left or one position
to the right on the tape (depending on whether M = L or M = R), and then
end up in state t. RTMs extend conventional Turing machines by associating
with every transition an element a ∈ Aτ . The symbols in A are thought of as
denoting observable activities; a transition labelled with an action symbol in
A will semantically be treated as observable. Observable transitions are used
to model interactions of an RTM with its environment or some other RTM, as
will be explained more in detail below when we introduce a notion of parallel
composition for RTMs. The symbol τ is used to declare that a transition is
unobservable. A classical Turing machine is an RTM in which all transitions are
declared unobservable.

Example 1. Assume that A = {c!d, c?d | c ∈ {i, o} & d ∈ D�}. Intuitively, i and
o are the input/output communication channels by which the RTM can interact
with its environment. The action symbol c!d (c ∈ {i, o}) then denotes the event
that a datum d is sent by the RTM along channel c, and the action symbol c?d
(c ∈ {i, o}) denotes the event that a datum d is received by the RTM along
channel c.

The left state-transition diagram in Fig. 1 specifies an RTM that first inputs
a string, consisting of an arbitrary number of 1s followed by the symbol #,
stores the string on the tape, and returns to the beginning of the string. Then,
it performs a computation to determine if the number of 1s is odd or even. In
the first case, it simply removes the string from the tape and returns to the
initial state. In the second case, it outputs the entire string, removes it from the
tape, and returns to the initial state. The right state-transition diagram in Fig. 1
outputs on channel i the infinite sequence 1#11#111# . . .#1n# . . . (n ≥ 1).
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i!#[�/1]R

Fig. 1. Examples of reactive Turing machines.

To formalise our intuitive understanding of the operational behaviour of
RTMs we shall below associate with every RTM a transition system. An Aτ -
labelled transition system T is a quadruple (S,→, ↑, ↓) consisting of a set of
states S, an initial state ↑ ∈ S, a subset ↓ ⊆ S of final states, and an Aτ -
labelled transition relation → ⊆ S×Aτ ×S. If (s, a, t) ∈ →, we write s

a−−→ t. If
s is a final state, i.e., s ∈ ↓, we write s↓. The transition system T is deterministic
if, for every state s ∈ S and for every a ∈ Aτ , s

a
−−→ s1 and s

a
−−→ s2 implies

s1 = s2, and, moreover, s τ−−→ s1 implies that there do not exist an action a 6= τ

and a state s2 such that s
a−−→ s2.

With every RTM M we are going to associate a transition system T(M).
The states of T(M) are the configurations of the RTM, consisting of a state
of the RTM, its tape contents, and the position of the read/write head on the
tape. We represent the tape contents by an element of (D�)

∗, replacing precisely
one occurrence of a tape symbol d by a marked symbol ď, indicating that the
read/write head is on this symbol. We denote by Ď� = {ď | d ∈ D�} the set of

marked tape symbols; a tape instance is a sequence δ ∈ (D� ∪ Ď�)
∗
such that

δ contains exactly one element of Ď�. Formally, a configuration is now a pair
(s, δ) consisting of a state s ∈ S, anda tape instance δ.

Our transition system semantics defines an Aτ -labelled transition relation

on configurations such that an RTM-transition s
a[d/e]M

−−−−−−→ t corresponds with
a-labelled transitions from configurations consisting of the RTM-state s and a
tape instance in which some occurrence of d is marked. The transitions lead to
configurations consisting of t and a tape instance in which the marked symbol d
is replaced by e, and either the symbol to the left or to right of this occurrence
of e is replaced by its marked version, according to whether M = L or M = R.
If e happens to be the first symbol and M = L, or the last symbol and M = R,
then an additional blank symbol is appended at the left or right end of the tape
instance, respectively, to model the movement of the head.

We introduce some notation to concisely denote the new placement of the
tape head marker. Let δ be an element of D∗

�
. Then by δ< we denote the element

of (D� ∪ Ď�)
∗
obtained by placing the tape head marker on the right-most
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symbol of δ if it exists, and �̌ otherwise. Similarly, by >δ we denote the element

of (D� ∪ Ď�)
∗
obtained by placing the tape head marker on the left-most symbol

of δ if it exists, and �̌ otherwise.

Definition 2. Let M = (S,→, ↑, ↓) be an RTM. The transition system T(M)
associated with M is defined as follows:

1. its set of states is the set of all configurations of M;
2. its transition relation → is the least relation satisfying, for all a ∈ Aτ ,

d, e ∈ D� and δL, δR ∈ D∗
�
:

(s, δLďδR)
a−−→ (t, δL

<eδR) iff s
a[d/e]L

−−−−−→ t , and

(s, δLďδR)
a−−→ (t, δLe

>δR) iff s
a[d/e]R

−−−−−−→ t ;

3. its initial state is the configuration (↑, �̌); and
4. its set of final states is the set of terminating configurations {(s, δ) | s↓}.

Turing introduced his machines to define the notion of effectively computable
function. By analogy, our notion of RTM can be used to define a notion of
effectively executable behaviour.

Definition 3. A transition system is executable if it is associated with an RTM.

Parallel composition. To illustrate how RTMs are suitable to model a form
of interaction, we shall now define on RTMs a notion of parallel composition,
equipped with a simple form communication. Let C be a finite set of channels for
the communication of data symbols between one RTM and another. Intuitively,
c!d stands for the action of sending datum d along channel c, while c?d stands
for the action of receiving datum d along channel c.

First, we define a notion of parallel composition on transition systems. Let
T1 = (S1,→1, ↑1, ↓1) and T2 = (S2,→2, ↑2, ↓2) be transition systems, and let C′ ⊆
C. The parallel composition of T1 and T2 is the transition system [T1 ‖ T2]C′ =
(S,→, ↑, ↓), with S, →, ↑ and ↓ defined by

1. S = S1 × S2;
2. (s1, s2)

a−−→ (s′1, s
′
2) iff a ∈ Aτ − {c!d, c?d | c ∈ C′, d ∈ D�} and either

(a) s1
a−−→ s′1 and s2 = s′2, or s2

a−−→ s′2 and s1 = s′1, or

(b) a = τ and either s1
c!d−−→ s′1 and s2

c?d−−−→ s′2, or s1
c?d−−−→ s′1 and s2

c!d−−→ s′2
for some c ∈ C′ and d ∈ D�;

3. ↑ = (↑1, ↑2); and
4. ↓ = {(s1, s2) | s1 ∈ ↓1 & s2 ∈ ↓2}.

Definition 4. Let M1 = (S1,→1, ↑1, ↓1) and M2 = (S2,→2, ↑2, ↓2) be RTMs,
and let C′ ⊆ C; by [M1 ‖ M2]C′ we denote the parallel composition of M1

and M2. The transition system T([M1 ‖ M2]C′) associated with the parallel
composition [M1 ‖C M2]C′

of M1 and M2 is the parallel composition of
the transition systems associated with M1 and M2, i.e., T([M1 ‖ M2]C′) =
[T(M1) ‖ T(M2)]C′ .
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Example 2. Let A be as in Example 1, let M denote the left-hand side RTM in
Fig. 1, and let E denote the right-hand side RTM in Fig. 1. Then the parallel
composition [M ‖ E ]i exhibits the behaviour of outputting, along channel o, the
string 11#1111# · · ·#1n# (n ≥ 2, n even).

Equivalences. In automata theory, Turing machines that compute the same
function or accept the same language are generally considered equivalent. In
fact, functional or language equivalence is underlying many of the standard
notions and results in automata theory. Perhaps most notably, a universal
Turing machine is a Turing machine that, when started with the code of some
Turing machine on its tape, simulates this machine up to functional or language
equivalence. A result from concurrency theory is that functional and language
equivalence are arguably too coarse for reactive systems, because they abstract
from all moments of choice (see, e.g., [1]). In concurrency theory many alternative
behavioural equivalences have been proposed; we refer to [9] for a classification.

The results about RTMs that are obtained in the remainder of this paper
are modulo branching bisimilarity [11]. We shall consider both the divergence-
insensitive and the divergence-preserving variant. Let T1 and T2 be transition
systems. If T1 and T2 are branching bisimilar, then we write T1 ↔b T2. If T1

and T2 are divergence-preserving branching bisimilar, then we write T1 ↔∆
b T2.

(Due to space limitations, the formal definitions had to be omitted; the reader is
referred to the full version [4], or to [10], where the divergence-preserving variant
is called branching bisimilarity with explicit divergence.)

3 Expressiveness of RTMs

We shall establish in this section that every effective transition system can be
simulated by an RTM up to branching bisimilarity, and that every boundedly
branching computable transition system can be simulated up to divergence-
preserving branching bisimilarity. We use this as an auxiliary result to establish
that a parallel composition of RTMs can be simulated by a single RTM.

Let T = (S,→, ↑, ↓) be a transition system; the mapping out : S → 2Aτ×S

associates with every state its set of outgoing transitions, i.e., for all s ∈ S,
out(s) = {(a, t) | s a−−→ t}, and fin( ) denotes the characteristic function of ↓.

Definition 5. Let T = (S,→, ↑, ↓) be an Aτ -labelled transition system. We
say that T is effective if there exist suitable codings of Aτ and S (into the
natural numbers) such that → and ↓ are recursively enumerable. We say that T
is computable if there exist suitable codings of Aτ and S such that the functions
out( ) and fin( ) are recursive.

The notion of effective transition system originates with Boudol [7]. For the
notion of computable transition system we adopt the definition from [2]. If →
and ↓ are recursively enumerable, then there exist algorithms that enumerate
the transitions in → and the states in ↓. If the functions out( ) and fin( ) are
recursive, then there exists an algorithm that, given a state s, yields the list of
outgoing transitions of s and determines if s ∈ ↓.
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Proposition 1. The transition system associated with an RTM is computable.

Hence, unsurpisingly, if a transition system is not computable, then it is not
executable either. It is easy to define transition systems that are not computable,
so there exist behaviours that are not executable. The full version of this paper
[4] contains an example that illustrates that there exist behaviours that are not
even executable up to branching bisimilarity.

Phillips associates, in [17], with every effective transition system a branching
bisimilar computable transition system of which, moreover, every state has a
branching degree of at most 2. (Phillips actually establishes weak bisimilarity,
but it is easy to see that branching bisimilarity holds.)

Definition 6. Let T = (S,→, ↑, ↓) be a transition system, and let B be a natural
number. We say that T has a branching degree bounded by B if, for every state
s ∈ S, |out(s)| ≤ B. We say that T is boundedly branching if there exists B ∈ N

such that the branching degree of T is bounded by B.

Proposition 2 (Phillips). For every effective transition system T there exists
a boundedly branching computable transition system T′ such that T ↔

b T
′.

A crucial insight in Phillips’ proof is that a divergence (i.e., an infinite
sequence of τ -transitions) can be exploited to simulate a state of which the set of
outgoing transitions is recursively enumerable, but not recursive. The following
example, inspired by [8], shows that introducing divergence is unavoidable.

Example 3. (In this and later examples, we denote by ϕx the partial recursive
function with index x ∈ N in some exhaustive enumeration of partial recursive
functions, see, e.g., [18].) Assume that A = {a, b}, and consider the transition
system T1 = (S1,→1, ↑1, ↓1) with S1, →1, ↑1 and ↓1 defined by

S1 = {s1,x, t1,x | x ∈ N} , ↑1 = s1,0 ,

→1 = {(s1,x, a, s1,x+1) | x ∈ N} ∪ {(s1,x, b, t1,x) | x ∈ N} , and

↓1 = {t1,x | ϕx(x) converges} .

If T2 is a transition system such that T1 ↔∆
b T2, as witnessed by some

divergence-preserving branching bisimulation relation R, then it can be argued
that T2 is not computable. A detailed argument can be found in the full
version [4].

By Proposition 2, in order to prove that every effective transition system
can be simulated up to branching bisimilarity by an RTM, it suffices to prove
that every boundedly branching computable transition system can be simulated
by an RTM. Let T = (ST ,→T , ↑T , ↓T) be a boundedly branching computable
transition system, say with branching degree bounded by B. It is reasonably
straightforward to construct an RTM M = (SM ,→M , ↑M , ↓M), which we call
the simulator for T, such that T(M) ↔∆

b T. The construction is detailed in [4].

Theorem 1. For every boundedly branching computable transition system T

there exists an RTM M such that T(M) ↔∆
b
T .
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Combining Theorem 1 with Proposition 2 we can conclude that RTMs can
simulate effective transition systems up to branching bisimilarity, but, in view
of Example 3, not in a divergence-preserving manner.

Corollary 1. For every effective transition system T there exists a reactive
Turing machine M such that T(M) ↔b T.

All computations involved in the simulation of T are deterministic; if M is
non-deterministic, then this is due to a state of which the menu includes some
action a more than once. Clearly, if T is deterministic, then, for every state s in
T, |out(s)| ≤ |Aτ |. So a deterministic transition system is boundedly branching,
and therefore we get the following corollary to Theorem 1.

Corollary 2. For every deterministic computable transition system T there
exists a deterministic RTM M such that T(M) ↔∆

b
T.

Using Theorem 1 we can now also establish that a parallel composition of
RTMs can be simulated, up to divergence-preserving branching bisimilarity, by
a single RTM. To this end, note that the transition systems associated with
RTMs are boundedly branching and computable. Further note that the parallel
composition of boundedly branching computable transition systems is again
computable. It follows that the transition system associated with a parallel
composition of RTMs is boundedly branching and computable, and hence, by
Theorem 1, there exists an RTM that simulates this transition system up to
divergence-preserving branching bisimilarity. Thus we get the following corollary.

Corollary 3. For every pair of RTMs M1 and M2 and for every set of commu-
nication channels C there is an RTM M such that T(M) ↔∆

b
T([M1 ‖ M2]C).

4 Universality

Recall that a universal Turing machine is some Turing machine that can simulate
an arbitrary Turing machine on arbitrary input. The assumptions are that both
the finite description of the to be simulated Turing machine and its input are
available on the tape of the universal Turing machine, and the simulation is
up to functional or language equivalence. We adapt this scheme in two ways.
Firstly, we let the simulation start by inputting the description of an arbitrary
RTM M along some dedicated channel u, rather than assuming its presence on
the tape right from the start. This is both conceptually desirable —for our aim
is to give interaction a formal status—, and technically necessary —for in the
semantics of RTMs we have assumed that the tape is initially empty. Secondly,
we require the behaviour of M to be simulated up to divergence-preserving
branching bisimilarity.

Thus, we arrive at the following tentative definitions. For an arbitrary RTM
M, denote by M an RTM that outputs a description of M along channel u
and then terminates. A universal RTM is then an RTM U such that, for every
RTM M, the parallel composition

[

U ‖ M
]

{u}
simulates T(M).
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Although such a universal RTM U exists up to branching bisimilarity as
we shall see below, it does not exist up to divergence-preserving branching
bisimilarity. To see this, note that the transition system associated with any
particular RTM U has a branching degree that is bounded by some natural
number B. It can then be established that, up to divergence-preserving branching
bisimilarity, U can only simulate RTMs with a branching degree bounded by B.
The argument is formalised in the following proposition; see [4] for a proof.

Proposition 3. There does not exist an RTM U such that for all RTM M it
holds that

[

U ‖ M
]

{u}
↔∆

b
T(M).

If we insist on simulation up to divergence-preserving branching bisimilarity,
then we need to relax the notion of universality. Let B be a natural number.
An RTM UB is universal up to B if for every RTM M with T(M) bounded by
branching degree B it holds that T(M) ↔∆

b

[

M ‖ UB

]

{u}
.

The construction of the simulator for a transition system of which the
branching degree is bounded by B in the proof of Theorem 1 can be adapted
to get the definition of an RTM UB that is universal up to B. It suffices
to slightly modify the initialisation fragment. Instead of writing the codes of
the functions out( ) and fin( ) and the initial state directly on the tape, the
initialisation fragment receives the code pMq of an arbitrary M along some
dedicated channel u. Then, it recursively computes the codes of the functions
out( ) and fin( ), and the initial state of T(M) and stores these on the tape.

Theorem 2. For every B there exists an RTM UB such that, for all RTMs M
with a branching degree bounded by B, it holds that T(M) ↔∆

b

[

M ‖ UB

]

{u}
.

If we drop divergence-preservation as a requirement for the simulation, then a
universal RTM does exist. At the heart of the argument is a trick, first described
in [2] and adapted by Phillips in [17], to use a divergence with (infinitely many)
states of at most a branching degree of 2 to simulate, up to branching bisimilarity,
a single state of some arbitrary (even countably infinite) branching degree.

Theorem 3. There exists an RTM U such that, for all RTMs M, it holds that
T(M) ↔b

[

U ‖ M
]

{u}
.

5 Recursive Specifications

A well-known result from the theory of automata and formal languages is that
the formal languages accepted by Turing machines correspond with the languages
generated by an unrestricted grammar. A grammar is a formal system for
describing a formal language. The corresponding notion in concurrency theory
is the notion of recursive specification, which is a formal system for describing
behaviour. In this section, we show that the behaviours of RTMs correspond with
the behaviours described by so-called TCPτ recursive specifications. The process
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theory TCPτ is a general theory for describing behaviour, encompassing the key
features of the well-known process theories ACPτ [5], CCS [15] and CSP [14].

We shall briefly introduce the syntax of TCPτ and informally describe its
operational semantics. We refer to the textbook [1] for an elaborate treatment.
We reuse the finite set C of channels and set of data D� introduced in Sect. 2; we
introduce the set of special actions I = {c?d, c!d | d ∈ D�, c ∈ C}. The actions
c?d and c!d denote the events that a datum d is received or sent along channel c.
Let N be a countably infinite set of names. The set of process expressions P is
generated by the following grammar (a ∈ Aτ ∪ I,N ∈ N , C′ ⊆ C):

p ::= 0 | 1 | a.p | p · p | p+ p | [p ‖ p]C′ | N .

The constant 0 denotes deadlock, the unsuccessfully terminated process. The
constant 1 denotes skip, the successfully terminated process. For each action
a ∈ A ∪ I there is a unary operator a. denoting action prefix; the process
denoted by a.p can do an a-transition to the process denoted by p. The
binary operator · denotes sequential composition. The binary operator + denotes
alternative composition or choice. The binary operator [ ‖ ]C′ denotes the
special kind of parallel composition that we have also defined on RTMs. It
enforces communication along the channels in C′, and communication results
in τ . (By including the restricted kind of parallel composition, we deviate from
the definition of TCPτ discussed in [1], but we note that our notion of parallel
composition is definable with the operations ‖, ∂ ( ) and τ ( ) of TCPτ in [1].)

A recursive specification E is a set of equations of the form: N
def

= p, with
as left-hand side a name N and as right-hand side a TCPτ process expression
p. It is required that a recursive specification E contains, for every N ∈ N , at
most one equation with N as left-hand side; this equation will be referred to
as the defining equation for N in N . Furthermore, if some name occurs in the
right-hand side of some defining equation, then the recursive specification must
include a defining equation for it. Let E be a recursive specification, and let p be
a process expression. There is a standard method to associate with p a transition
system TE(p). The details can be found, e.g., in [1].

In [4] we present the details of a construction that associates with an arbitrary
RTM a TCPτ recursive specification that defines its behaviour up to divergence-
preserving branching bisimilarity. Thus, we get the following correspondence.

Theorem 4. For every RTM M there exists a finite recursive specification E

and a process expression p such that T(M) ↔∆
b
TE(p),

As a corollary we find that every executable transition system is definable,
up to divergence-preserving branching bisimilarity, by a TCPτ recursive specifi-
cation. Since there exist recursive specifications with an unboundedly branching
associated transition system (see, e.g., [3], for the converse of the abovementioned
theorem), we have to give up divergence-preservation. Since the transition system
associated with a finite recursive specification is clearly effective, we do get, by
Corollary 1, the following result.
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Corollary 4. For every finite recursive specification E and process expression
p, there exists an RTM M such that TE(p) ↔b T(M).

6 Concluding Remarks and Future Work

We have proposed a notion of reactive Turing machine and discussed its
expressiveness in bisimulation semantics. Although it is not the aim of this
work to contribute to the debate as to whether interactive computation is more
powerful than traditional computation, our notion of RTM may nevertheless
turn out to be a useful tool in the discussion. For instance, our result that the
parallel composition of RTMs can be simulated by an RTM seems to contradict
the implied conjecture in [12, Sect. 11] that interactive computation performed
by multiple machines working together is more expressive than interactive
computation performed by a single machine.

To be sure, however, we would need to firmly establish the robustness of
our notion by showing that variations on its definition (e.g., multiple tracks
or multiple tapes), and by showing that it can simulate the other proposals
(persistent Turing machines [12], interactive Turing machines [21]). We also
intend to consider interactive versions of other computational models. The λ-
calculus would be an interesting candidate to consider, because of the well-known
result that it is inherently sequential; this suggests that an interactive version of
λ-calculus will be less expressive than RTMs. In particular, we conjecture that
the evaluation of parallel-or or McCarthy’s amb can be simulated with RTMs.

RTMs may also prove to be a useful tool in establishing the expressiveness of
process theories. For instance, the transition system associated with a π-calculus
expression is effective, so it can be simulated by an RTM, at least up to branching
bisimilarity. The π-calculus can to some extent be seen as the interactive version
of the λ-calculus. We conjecture that the converse —every executable transition
system can be specified by a π-calculus expression— is also true.

Petri showed already in his thesis [16] that concurrency and interaction may
serve to bridge the gap between the theoretically convenient Turing machine
model of a sequential machine with unbounded memory, and the practically more
realistic notion of extendable architecture of components with bounded memory.
The specification we present in the proof of Theorem 4 (see [4]) is another
illustration of this idea: the unbounded tape is modelled as an unbounded parallel
composition. It would be interesting to further study the inherent tradeoff
between unbounded parallel composition and unbounded memory in the context
of RTMs, considering unbounded parallel compositions of RTMs with bounded
memory.
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