
ar
X

iv
:1

10
4.

17
38

v1
 [

cs
.L

O
]

 9
 A

pr
 2

01
1

Reactive Turing Machines

Jos C. M. Baeten Bas Luttik Paul van Tilburg

Abstract

We propose reactive Turing machines, extending classical Turing machines
with a process-theoretical notion of interaction. We show that every effective
transition system is simulated up to branching bisimilarity by a reactive Tur-
ing machine, and that every computable transition system with a bounded
branching degree is simulated up to divergence-preserving branching bisimi-
larity by a reactive Turing machine. We conclude from these results that there
exist universal reactive Turing machines, and that the parallel composition of
a finite number of (communicating) reactive Turing machines can be simulated
by a single reactive Turing machine. We also establish a correspondence be-
tween reactive Turing machines and the process theory TCPτ , proving that a
transition system can be simulated, up to branching bisimilarity, by a reactive
Turing machine if, and only if, it is definable by a finite TCPτ -specification.

1 Introduction

The Turing machine [23] is widely accepted as a computational model suitable for
exploring the theoretical boundaries of computing. Motivated by the existence of
universal Turing machines, many textbooks on the theory of computation (e.g., [22,
18]) present the Turing machine not just as a theoretical model to explain which
functions are computable, but as an accurate conceptual model of the computer. For
instance, Sipser writes that “[a] Turing machine can do everything a real computer
can do.” [22] This statement is sometimes referred to as the strong Church-Turing
thesis, as opposed to the normal Church-Turing thesis according to which every
effectively calculable function is computable by a Turing machine.

There is, however, a well-known limitation to viewing the Turing machine as a
conceptual model of a computer. A Turing machine operates from the assumptions
that: (1) all the input it needs for the computation is available on the tape from
the very beginning; (2) it performs a terminating computation; and (3) it leaves the
output on the tape at the very end. That is, a Turing machine computes a func-
tion, and thus it abstracts from two key ingredients of contemporary computing:
interaction and non-termination. Nowadays, most computing systems are so-called
reactive systems [17], systems that are generally not meant to terminate and typ-
ically consist of a number of computing devices that interact with each other and
with their environment. A reactive system often unremittingly depends on input,
and unremittingly produces output.

Concurrency theory emerged towards the end of the 1970s as the study of re-
active systems. Since then, it has contributed significantly to the fundamental
understanding of the notion of interaction; we mention three contributions that
are particularly relevant for this paper. Firstly, it put forward the notion of la-
belled transition system —a generalisation of the notion of finite-state automaton
from classical automata theory— as the prime mathematical model to represent
discrete behaviour. Secondly, it offered the insight that language equivalence —
the underlying equivalence in classical automata theory— is too coarse in a setting
with interacting automata; instead one should consider automata up to some form

1

http://arxiv.org/abs/1104.1738v1

of bisimilarity. Thirdly, it yielded many algebraic process calculi facilitating the
formal specification and verification of reactive systems.

To date, many undergraduate computer science curricula do provide an introduc-
tion to the theory of computation, presenting the Turing machine as a conceptual
model of the computer, but then forget to discuss a theory of interaction. In view of
the importance of interaction in contemporary computing, we think that this is an
unfortunate situation, and that it may be remedied by a better integration of the
theories of computation and concurrency. With a better integration of the theories,
they can, e.g., be taught efficiently in a single course on automata and processes,
as is currently already done at Eindhoven University of Technology. To foster the
integration of the theories, we are engaged in a project to reconsider definitions and
results of traditional automata theory, as taught in a typical undergraduate course,
investigating how to properly extend them with a notion of interaction (see also
[3, 8]).

In this paper we propose and discuss a notion of reactive Turing machine (RTM),
extending the classical notion of Turing machine with interaction in the style of con-
currency theory. The extension consists of a facility to declare every transition to
be either observable, by labelling it with an action symbol, or unobservable, by la-
belling it with τ . Typically, a transition labelled with an action symbol models an
interaction of the RTM with its environment (or some other RTM), while a tran-
sition labelled with τ refers to an internal computation step. Thus, a conventional
Turing machine can be regarded as a special kind of RTM in which all transitions
are declared unobservable by labelling them with τ . The behaviour of RTMs is de-
fined in terms of labelled transition systems, so that they can be considered modulo
any suitable behavioural equivalence defined on labelled transition systems. In this
paper we shall mainly use (divergence-preserving) branching bisimilarity [15], which
is the finest behavioural equivalence in van Glabbeek’s spectrum (see [13]).

We establish in Sect. 3 that every computable transition system with a bounded
branching degree can be simulated by an RTM. This result has some interesting
consequences. It allows us to conclude that the behaviour of a parallel composition
of RTMs can be simulated on a single RTM. It also allows us to conclude the
existence of universal RTMs, which can input the code of some arbitrary RTM and
then simulate it.

In Sect. 4, we consider the correspondence between RTMs and the process the-
ory TCPτ . We establish that a transition system can be simulated by an RTM if,
and only if, it is definable, again up to divergence-preserving branching bisimilarity,
by a finite recursive TCPτ -specification [1]. Recursive specifications are often con-
sidered to be the process-theoretic counterparts of grammars in the theory of formal
languages. So the result in Sect. 4 may be considered as the process-theoretic coun-
terpart of the correspondence between Turing machines and unrestricted grammars.
Furthermore, the finite recursive TCPτ -specification actually consists of a specifi-
cation of the finite-state control of the RTM that interacts with a specification
modelling a tape. Thus, as an interesting corollary, we obtain a specification that
makes the conceptual interaction within a Turing machine between its finite-state
control and its tape memory explicit; a similar result was also obtained for push-
down automata in [5].

Several extensions of Turing machines with some form of interaction have been
proposed in the literature, already by Turing in [24], and more recently in [12, 16,
26]. The goal in these works is mainly to investigate to what extent interaction
may have a beneficial effect on the power of sequential computation. Interaction is,
e.g., added by allowing an algorithm to query its environment, or by assuming that
the environment periodically writes a write-only input tape and reads a read-only
output tape of a Turing machine. Thereby, the focus remains on the computational
aspect, and interaction is not treated as a first-class citizen, whereas our goal is

2

to achieve an integration of automata theory and concurrency theory that treats
computation and reactivity on an equal footing.

2 Reactive Turing Machines

We fix a finite set A of action symbols that we shall use to denote the observable
events of a system. An unobservable event will be denoted with τ , assuming that
τ 6∈ A; we shall henceforth denote the set A ∪ {τ} by Aτ . We also fix a finite set
D of data symbols. We add to D a special symbol � to denote a blank tape cell,
assuming that � 6∈ D; we denote the set D ∪ {�} of tape symbols by D�.

Definition 2.1. A reactive Turing machine (RTM) M is a quadruple (S,→, ↑, ↓)
consisting of a finite set of states S, a distinguished initial state ↑ ∈ S, a subset of
final states ↓ ⊆ S, and a (D� ×Aτ ×D� × {L,R})-labelled transition relation

→ ⊆ S ×D� ×Aτ ×D� × {L,R} × S .

An RTM is deterministic if (s, d, a, e1,M1, t1) ∈ → and (s, d, a, e2,M2, t2) ∈ →
implies that e1 = e2, t1 = t2 and M1 = M2 for all s, t1, t2 ∈ S, d, e1, e2 ∈ D�,
a ∈ Aτ , and M1,M2 ∈ {L,R}.

If (s, d, a, e,M, t) ∈ →, we write s
a[d/e]M
−−−−−−→ t. The intuitive meaning of such a

transition is that whenever M is in state s and d is the symbol currently read by the
tape head, then it may execute the action a, write symbol e on the tape (replacing
d), move the read/write head one position to the left or one position to the right on
the tape (depending on whether M = L or M = R), and then continue in state t.
RTMs extend conventional Turing machines by associating with every transition an
element a ∈ Aτ . The symbols in A are thought of as denoting observable activities;
a transition labelled with an action symbol in A will semantically be treated as
observable. Observable transitions are used to model interactions of an RTM with
its environment or some other RTM, as will be explained more in detail below when
we introduce a notion of parallel composition for RTMs. The symbol τ is used
to declare that a transition is unobservable. We consider a conventional Turing
machine as an RTM in which all transitions are declared unobservable.

Example 2.2. Assume that A = {c!d, c?d | c ∈ {i, o} & d ∈ D�}. Intuitively, i
and o are the input/output communication channels by which the RTM can interact
with its environment. The action symbol c!d (c ∈ {i, o}) then denotes the event
that a datum d is sent by the RTM along channel c, and the action symbol c?d
(c ∈ {i, o}) denotes the event that a datum d is received by the RTM along channel
c.

τ [#/�]L

τ [1/�]L

τ [#/�]L

o!1[1/�]L

o!#[�/�]R

τ [�/�]R

i?1[�/1]R

i?#[�/#]L

τ [1/1]L

τ [�/�]R

τ [1/1]R

τ [1/1]R

Figure 1: An example of a reactive Turing machine.

The state-transition diagram in Figure 1 concisely specifies an RTM that first
inputs a string, consisting of an arbitrary number of 1s followed by the symbol #,

3

stores the string on the tape, and returns to the beginning of the string. Then, it
performs a computation to determine if the number of 1s is odd or even. In the first
case, it simply removes the string from the tape and returns to the initial state. In
the second case, it outputs the entire string, removes it from the tape, and returns
to the initial state.

To formalise our intuitive understanding of the operational behaviour of RTMs
we shall below associate with every RTM a transition system.

Definition 2.3. An Aτ -labelled ransition system T is a quadruple (S,→, ↑, ↓)
consisting of a set of states S, an initial state ↑ ∈ S, a subset ↓ ⊆ S of final states,
and an Aτ -labelled transition relation → ⊆ S ×Aτ × S. If (s, a, t) ∈ →, we write
s

a−−→ t. If s is a final state, i.e., s ∈ ↓, we write s↓.

With every RTM M we are going to associate a transition system T(M). The
states of T(M) are the configurations of the RTM, consisting of a state of the RTM,
its tape contents, and the position of the read/write head on the tape. We represent
the tape contents by an element of (D�)

∗, replacing precisely one occurrence of a
tape symbol d by a marked symbol ď, indicating that the read/write head is on
this symbol. We denote by Ď� = {ď | d ∈ D�} the set of marked tape symbols;

a tape instance is a sequence δ ∈ (D� ∪ Ď�)
∗
such that δ contains exactly one

element of Ď�. Note that we do not use δ exclusively for tape instances; we also
use δ for sequences over D. A tape instance thus is a finite sequence of symbols
that represents the contents of a two-way infinite tape. Henceforth, we shall not
distinguish between tape instances that are equal modulo the addition or removal
of extra occurrences of the symbol � at the left or right extremes of the sequence.
That is, we shall not distinguish tape instances δ1 and δ2 if �ωδ1�

ω = �ωδ2�
ω.

Definition 2.4. A configuration of an RTM M = (S,→, ↑, ↓) is a pair (s, δ)
consisting of a state s ∈ S, and a tape instance δ.

Our transition system semantics defines an Aτ -labelled transition relation on

configurations such that an RTM-transition s
a[d/e]M
−−−−−−→t corresponds with a-labelled

transition from configurations consisting of the RTM-state s and a tape instance
in which some occurrence of d is marked. The transition leads to a configuration
consisting of t and a tape instance in which the marked symbol d is replaced by e,
and either the symbol to the left or to right of this occurrence of e is replaced by
its marked version, according to whether M = L or M = R. If e happens to be
the first symbol and M = L, or the last symbol and M = R, then an additional
blank symbol is appended at the left or right end of the tape instance, respectively,
to model the movement of the head.

It is convenient to introduce some notation to be able to concisely denote the
new placement of the tape head marker. Let δ be an element of D∗

�
. Then by δ<

we denote the element of (D� ∪ Ď�)
∗
obtained by placing the tape head marker on

the right-most symbol of δ if it exists, and �̌ otherwise, i.e.,

δ< =

{

ζď if δ = ζd (d ∈ D�, ζ ∈ D∗
�
) , and

�̌ if ζ = ε .

(We use ε to denote the empty sequence.) Similarly, by >δ we denote the element

of (D� ∪ Ď�)
∗
obtained by placing the tape head marker on the left-most symbol

of δ if it exists, and �̌ otherwise, i.e.,

>δ =

{

ďζ if δ = dζ (d ∈ D�, ζ ∈ D∗
�
) , and

�̌ if ζ = ε .

4

Definition 2.5. Let M = (S,→, ↑, ↓) be an RTM. The transition system T(M)
associated with M is defined as follows:

1. its set of states is the set of all configurations of M;

2. its transition relation → is the least relation satisfying, for all a ∈ Aτ , d, e ∈
D� and δL, δR ∈ D∗

�
:

(s, δLďδR)
a−−→ (t, δL

<eδR) iff s
a[d/e]L

−−−−−→ t , and

(s, δLďδR)
a−−→ (t, δLe

>δR) iff s
a[d/e]R

−−−−−−→ t ;

3. its initial state is the configuration (↑, �̌); and

4. its set of final states is the set of terminating configurations {(s, δ) | s↓}.

Turing introduced his machines to define the notion of effectively computable
function. By analogy, our notion of RTM can be used to define a notion of effectively
executable behaviour.

Definition 2.6. A transition system is executable if it is associated with an RTM.

Parallel composition To illustrate how RTMs are suitable to model a form of
interaction, we shall now define on RTMs a notion of parallel composition, equipped
with a simple form communication. (We are not trying to define the most general
or most suitable notion of parallel composition for RTMs here; the purpose of our
notion of parallel composition is just to illustrate how RTMs may run in parallel and
interact.) Let C be a finite set of channels for the communication of data symbols
between one RTM and another, and let A′ = {c!d, c?d | c ∈ C, d ∈ D}; it is assumed
that A′ ⊆ A. Intuitively, c!d stands for the action of sending datum d along channel
c, while c?d stands for the action of receiving datum d along channel c.

First, we define a notion of parallel composition on transition systems. Let T1 =
(S1,→1, ↑1, ↓1) and T2 = (S2,→2, ↑2, ↓2) be transition systems; the parallel com-
position [T1 ‖ T2]C of T1 and T2 is the transition system [T1 ‖ T2]C = (S,→, ↑, ↓),
with S, →, ↑ and ↓ defined by

1. S = S1 × S2;

2. (s1, s2)
a−−→ (s′1, s

′
2) iff a ∈ Aτ −A′ and either

(a) s1
a−−→ s′1 and s2 = s′2, or s1 = s′1 and s2

a−−→ s′2, or

(b) a = τ and either s1
c!d−−→ s′1 and s2

c?d−−−→ s′2, or s1
c?d−−−→ s′1 and s2

c!d−−→ s′2
for some c ∈ C and d ∈ D;

3. ↑ = (↑1, ↑2); and

4. ↓ = {(s1, s2) | s1 ∈ ↓1 & s2 ∈ ↓2}.

Example 2.7. Let A be as in Example 2.2. Figure 2 depicts the state-transition
diagram of an RTM that enumerates the natural numbers and sends them along
channel i. Let M denote the RTM specified in Figure 1, and let E denote the RTM
specified in Figure 2. Then the parallel composition [M ‖ E]i exhibits the behaviour
outputting, along channel o, all strings “1n#” with n even.

5

τ [�/1]R τ [�/�]L
τ [1/1]L

τ [�/�]R

i!1[1/1]Ri!#[�/1]R

Figure 2: An RTM that enumerates and sends the strings 1#, 11#, 111#,

Equivalence In automata theory, Turing machines that compute the same func-
tion or accept the same language are generally considered equivalent. In fact, func-
tional or language equivalence is underlying many of the standard notions and
results in automata theory. Perhaps most notably, a universal Turing machine is
a Turing machine that, when started with the code of some Turing machine on its
tape, simulates this machine up to functional or language equivalence. A result
from concurrency theory is that functional and language equivalence are arguably
too coarse for reactive systems, because they abstract from all moments of choice. In
concurrency theory many alternative behavioural equivalences have been proposed;
we refer to [13] for a classification.

The results about RTMs that are obtained in the the remainder of this paper are
modulo branching bisimilarity [15], which is the finest behavioural equivalence in
van Glabbeek’s linear time - branching time spectrum [13]. We shall consider both
the divergence-insensitive and the divergence-preserving variant. (The divergence-
preserving variant is called branching bisimilarity with explicit divergence in [15, 13],
but in this paper we prefer the term divergence-preserving branching bisimilarity.)

We proceed to define the behavioural equivalences that we shall employ in this
paper to compare transition systems. Let → be an Aτ -labelled transition relation

on a set S, and let a ∈ Aτ ; we write s
(a)
−−→ t if s

a−−→ t or a = τ and s = t.
Furthermore, we denote the transitive closure of τ−−→ by −−→+, and we denote the
reflexive-transitive closure of τ−−→ by −−։.

Definition 2.8. Let T1 = (S1,→1, ↑1, ↓1) and T2 = (S2,→2, ↑2, ↓2) be transition
systems. A branching bisimulation from T1 to T2 is a binary relation R ⊆ S1 × S2

and, for all states s1 and s2, s1 R s2 implies

1. if s1
a−−→1 s

′
1, then there exist s′2, s

′′
2 ∈ S2 such that s2−−։2 s

′′
2

(a)
−−→2 s

′
2, s1 R s′′2

and s′1 R s′2;

2. if s2
a

−−→2 s
′
2, then there exist s′1, s

′′
1 ∈ S1 such that s1−−։1 s

′′
1

(a)
−−→1 s

′
1, s

′′
1 R s2

and s′1 R s′2;

3. if s1↓1, then there exists s′2 such that s2 −−։2 s
′
2, s1 R s′2 and s′2↓2; and

4. if s2↓2, then there exists s′1 such that s1 −−։1 s
′
1, s

′
1 R s2 and s′1↓1.

The transition systems T1 and T2 are branching bisimilar (notation: T1 ↔b T2) if
there exists a branching bisimulation from T1 to T2 such that ↑1 R ↑2.

A branching bisimulation R from T1 to T2 is divergence-preserving if, for all
states s1 and s2, s1 R s2 implies

5. if there exists an infinite sequence (s1,i)i∈N
such that s1 = s1,0, s1,i

τ−−→ s1,i+1

and s1,i R s2 for all i ∈ N, then there exists a state s′2 such that s2 −−→+ s′2
and s1,i R s′2 for some i ∈ N; and

6. if there exists an infinite sequence (s2,i)i∈N
such that s2 = s2,0, s2,i

τ−−→ s2,i+1

and s1 R s2,i for all i ∈ N, then there exists a state s′1 such that s1 −−→+ s′1
and s′1 R s2,i for some i ∈ N.

6

The transition systems T1 and T2 are divergence-preserving branching bisimilar
(notation: T1 ↔∆

b T2) if there exists a divergence-preserving branching bisimulation
from T1 to T2 such that ↑1 R ↑2.

The notions of branching bisimilarity and divergence-preserving branching bisim-
ilarity originate with [15]. The particular divergence conditions we use to define
divergence-preserving branching bisimulations here are discussed in [14], where it is
also proved that divergence-preserving branching bisimilarity is an equivalence.

Definition 2.9. Let T be a transition system and let s and t be two states in T.
A τ-transition s

τ−−→ t is inert if s and t are related by the maximal divergence-
preserving branching bisimulation on T.

If s and t are distinct states, then an inert τ -transition s
τ−−→ t can be eliminated

from a transition system, e.g., by removing all outgoing transitions of s, changing
every outgoing transition t

a−−→ u from t to an outgoing transition s
a−−→ u, and

removing the state t. This operation yields a transition system that is divergence-
preserving branching bisimilar to the original transition system.

An unobservable transition of an RTM, i.e., a transition labelled with τ , may
be thought of as an internal computation step. Divergence-preserving branching
bisimilarity allows us to abstract from internal computations as long as they do not
discard the option to execute a certain behaviour. The following notion of will be
technically convenient in the remainder of the paper.

Definition 2.10. Given some transition system T, an internal computation from
state s to s′ is a sequence of states s1, . . . , sn in T such that s = s1

τ−−→. . .
τ−−→sn = s′.

An internal computation is called fully deterministic iff, for every state si (1 ≤ i <
n), si

a
−−→ si

′ implies a = τ and si
′ = si+1. We shall write s ։ s′ if there exists a

fully deterministic computation from s to s′.

Lemma 2.11. Let T be a transition system and let s and t be two states in T. If
s ։ s′, then s and s′ are related by the maximal divergence-preserving branching
bisimulation on T.

3 Expressiveness of RTMs

To confirm the expressiveness of RTMs, we shall establish in this section that every
effective transition system can be simulated up to branching bisimilarity, and that
every computable transition system can be simulated up to divergence-preserving
branching bisimilarity. We use this as an auxiliary result to establish that a parallel
composition of RTMs can be simulated by a single RTM, and we derive from it the
existence of universal RTMs.

Let T = (S,→, ↑, ↓) be a transition system; the mapping out() : S → 2Aτ×S

associates with every state its set of outgoing transitions, i.e., for all s ∈ S,

out(s) = {(a, t) | s a−−→ t} ;

and we denote by fin() the characteristic function of ↓.

Definition 3.1. Let T = (S,→, ↑, ↓) be an Aτ -labelled transition system. We
say that T is effective if → and ↓ are recursively enumerable. We say that T is
computable if both the functions out() and fin() are recursive.

We shall, in this paper, not go into the details of explaining more carefully
what are suitable codings into natural numbers of Aτ and S, and how they should
be extended to codings of →, ↓, out() and fin() so that the formal theory of

7

s1,0 s1,1 s1,2 s1,3

t0 t1 t2 t3

a a a a

b b b b

Figure 3: The transition system T1.

recursiveness makes sense for arbitrary (countable) transition systems. (The reader
may want to consult [21, §1.10] for more explanations.) If → and ↓ are recursively
enumerable, then this, intuitively, means that there exist algorithms that enumerate
the transitions in → and the states in ↓. If the function out() is recursive, then
there exists an algorithm that, given a state s, yields the list of outgoing transitions,
and if the function fin() is recursive, then there exists an algorithm that, given a
state s, determines if s ∈ ↓.

Proposition 3.2. The transition system associated with an RTM is computable.

Phillips proved in [19] that every effective transition system is weakly bisimilar
to a computable transition system. It can easily be seen that his proof actually
associates with every effective transition system a branching bisimilar computable
transition system of which, moreover, every state has a branching degree of at most
2.

Definition 3.3. Let T = (S,→, ↑, ↓) be a transition system, and let B be a natural
number. We say that T has a branching degree bounded by B if, for every state
s ∈ S, |out(s)| ≤ B. We say that T is boundedly branching if there exists B ∈ N

such that the branching degree of T is bounded by B.

Proposition 3.4 (Phillips). For every effective transition system T there exists a
boundedly branching computable transition system T′ such that T ↔b T

′.

A crucial insight in Phillips’ proof is that a divergence (i.e., an infinite sequence
of τ -transitions) can be exploited to simulate a state of which the set of outgoing
transitions is recursively enumerable, but not recursive. The following example
shows that introducing divergence is unavoidable.

Example 3.5. (In this example, we denote by ϕx the partial recursive function
with index x ∈ N in some exhaustive enumeration of partial recursive functions,
see, e.g., [21].) Assume that A = {a, b}, and consider the transition system T1 =
(S1,→1, ↑1, ↓1) with S1, →1, ↑1 and ↓1 defined by

S1 = {s1,x, t1,x | x ∈ N} ,

→1 = {(s1,x, a, s1,x+1) | x ∈ N} ∪ {(s1,x, b, t1,x) | x ∈ N} ,

↑1 = s1,0 , and

↓1 = {t1,x | ϕx(x) converges} .

(See also Figure 3).
Now suppose that T2 is a transition system such that T1 ↔∆

b T2, as witnessed
by some divergence-preserving branching bisimulation relation R; we argue that T2

is not computable by deriving a contradiction from the assumption that it is.
Clearly, since T1 does not admit infinite sequences of τ-transitions, if R is

divergence-preserving, then T2 does not admit infinite sequences of τ-transitions
either. It follows that if s1 R s2, then there exists a state s′2 in T2 such that
s2 −−։2 s2, s1 R s′2, and s′2

τ−−9 . Moreover, since T2 is computable and does not

8

admit infinite sequences of consecutive τ-transitions, a state s′2 satisfying the afore-
mentioned properties is produced by the algorithm that, given a state of T2, selects
an enabled τ-transition and recurses on the target of the transition until it reaches
a state in which no τ-transitions are enabled.

But then we also have an algorithm that determines if ϕx(x) converges:

1. it starts from the initial state ↑2 of T2;

2. it runs the algorithm to find a state without outgoing τ-transitions, and then
it repeats the following steps x times:

(a) execute the inc-transition enabled in the reached state;

(b) run the algorithm to find a state without outgoing τ-transitions again;

since ↑1 R ↑2, this yields a state s2,x in T2 such that s1,x R s2,x;

3. it executes the run-transition that must be enabled in s2,x, followed, again, by
the algorithm to find a state without outgoing τ-transitions; this yields a state
t2,x, without any outgoing transitions, such that t1,x R t2,x.

From t1,x R t2,x it follows that t2,x ∈ ↓2 iff ϕx(x) converges, so the problem
of deciding whether ϕx(x) converges has been reduced to the problem of deciding
whether t2,x ∈ ↓2. Since it is undecidable if ϕx(x) converges, it follows that ↓2 is
not recursive, which contradicts our assumption that T2 is computable.

3.1 Simulating Boundedly Branching Computable Transition

Systems

By Proposition 3.4, in order to prove that every effective transition systems can
be simulated up to branching bisimilarity by an RTM, it suffices to prove that
every boundedly branching computable transition system can be simulated by an
RTM. We shall now proceed to prove this, and, in fact, we shall establish that the
simulation can be made to preserve divergence.

For the remainder of this section let T = (ST ,→T , ↑T , ↓T) be a boundedly branch-
ing computable transition system, say with branching degree bounded by B. We
shall construct an RTM M = (SM ,→M , ↑M , ↓M), called the simulator for T, such
that T(M) ↔∆

b T.

Tape. Let us assume encodings of the functions p q : out() → N, p q : fin() → N,
and the sets p q : Aτ → {1, . . . , |Aτ |} and p q : SM → N; the simulator RTM M
stores these functions, actions, states and transitions on its tape as natural numbers.
The existence of the encodings of the functions out() and fin() is due the the fact
that they are recursive.

The way in which natural numbers are represented as sequences over some finite
alphabet of tape symbols is largely irrelevant, but in our construction below it is
sometimes convenient to have an explicit representation. In such cases, we assume
that numbers are stored in unary notation using the symbol 1. That is, a natural
number n is represented on the tape as the sequence 1n+1 of n + 1 occurrences of
the symbol 1. In addition to the symbol 1, we use the symbols J and K to enclose the
(static) codes of the two functions that steer the simulation of T on the tape, | to
separate the elements of a tuple of natural numbers, and # to separate tuples. The
RTM M constructed below will incorporate the operation of some auxiliary Turing
machines that may use some extra encoding and symbols; let D′ be the collection
of all these extra symbols. Then the tape alphabet D of M is

D = {1, J, K, |,#} ∪ D′ .

9

We shall define M as the union of three fragments: an initialisation fragment, a
state fragment, and a step fragment. Instead of directly using (conventional) Turing
machines computing out() and fin() we store their codes on the tape and use a
Turing machine to interpret them these codes. This is slightly more generic than
necessary; the advantage of proceeding in this way is that we can easily adapt the
simulator to obtain a universal RTM (in Sect. 3.3).

Initialisation fragment. The initialisation fragment Init prepares the tape for
simulation of T by first writing the symbol J on the tape, followed by (the codes of)
the functions out() and fin() belonging to T which are separated by the symbol |.
Then it writes the symbol K on the tape followed by the code of the initial state of
T. Thereafter, it returns the tape head to the symbol K. Let Mi be an RTM that
achieves precisely this; when started with an empty tape (�̌), it halts with the tape
instance Jpoutq|pfinqǨp↑Tq.

The set of states of Init is defined as

SInit = SMi \ ↓Mi ,

its initial state is defined as

↑Init = ↑Mi ; and

its set of transitions is defined as

→Init = {(in , d, τ, e,M, in ′) | (in , d, τ, e,M, in ′) ∈ →Mi , in ′ ∈ SMi \ ↓Mi}}

∪ {(in , d, τ, e,M, ↑State) | (in , d, τ, e,M, in ′) ∈ →Mi , in ′ ∈ ↓Mi} .

Lemma 3.6. The fragment Init has a deterministic computation from (↑Init, �̌) to
(↑State, Jpoutq|pfinqǨp↑Tq).

State fragment. The state fragment State replaces the code of the current state
on the tape by a sequence of codes that represents the behaviour of T in the current
state. It is assumed that it starts with a tape instance of the form Jpoutq|pfinqǨpsq
with s ∈ ST .

Recall that the functions out() and fin() are both recursive. Hence, by [21]
there exists a (conventional) deterministic Turing machine Ms that, when it is
started with a tape instance Jpoutq|pfinqǨpsq terminates with the tape instance

Jpoutq|pfinqǨp(s ∈ ↓T)?q|pa1q| · · · |pakq#ps1q| · · · |pskq# ,

where out(s) = {(ai, si) | 1 ≤ i ≤ k} and p(s ∈ ↓T)?q is a special code denoting
fin(s). Note that, since the branching degree of T is bounded by B, we have that
k ≤ B. We assume without loss of generality that the Turing machine Ms first
copies the codes of out() and fin() to the right of the symbol K and thereafter never
crosses this boundary symbol again for its computation. We refer to the sequence
(s ∈ ↓T)?, a1, . . . , ak that is generated and stored on the tape by Ms as the menu
in s.

The set of states of State is defined as

SState = SMs \ ↓Ms ;

its initial states is defined as

↑State = ↑Ms ; and

10

its set of transitions is defined as

→State = {(st , d, τ, e,M, st ′) | (st , d, e,M, st ′) ∈ →Ms , st ′ ∈ SState \ ↓Ms}

∪ {(st , d, τ, e,M, ↑Step) | (st , d, e,M, st ′) ∈ →Ms , st ′ ∈ ↓Ms} .

(Note how we associate with Ms (a fragment of) an RTM by adding τ -labels to its
transitions.)

Lemma 3.7. The fragment State has a deterministic computation from configura-
tion (↑State, Jpoutq|pfinqǨpsq) for each s ∈ ST to

(↑Step, Jpoutq|pfinqǨp(s ∈ ↓T)?q|pa1q| · · · |pakq#ps1q| · · · |pskq#) ,

where the part to the right of the symbol K on the tape represents the menu generated
by a applying the functions out() and fin() to s.

Step fragment. The purpose of the step fragment Step is to select an action ai
from the set of enabled actions in the current state, execute that action, and remove
p(s ∈ ↓T)?q and all (codes of) actions and states from the tape, except the code of
the target state of the ai-transition.

The state s in the simulated transition system T embodies a choice between
its k outgoing transitions s

a1−−→ s1, . . . , s
ak−−→ sk, and is terminating if, and only

if, s ∈ ↓T . In order to get a branching bisimulation between T and the transition
system associated with M, the latter will necessarily have to include a configuration
offering the same choice of outgoing transitions and the same termination behaviour.
It is important to note that branching bisimilarity does not, e.g., allow the choice
for one of the outgoing transitions to be made by a computation (resulting in a
sequence of τ -transitions) that eliminates options one by one. The fragment Step

will therefore have to include a special state sp(s∈↓T)?,a1,...,ak
, for every potential

menu. (Note that, since k ≤ B, there will be at most N =
∑B

k=0 2 · |Aτ |k different
menus in T.)

The functionality of the step fragment is split up in two parts: before and after
the simulation of an ai-transition. The first part uses the RTM Mpd to decode the
menu on the tape ending up in the state sp(s∈↓T)?,a1,...,ak

from which termination,
if enabled, or an ai-transition can occur. In case the transition is performed, the
second part finds the target state si of the ai-transition. The RTM Mpm will
move the code psiq to the right of the symbol K and the RTM Mpc will empty the
remaining part of the tape.

The fragment Step starts from a tape instance of the form

Jpoutq|pfinqǨp(s ∈ ↓T)?q|pa1q| · · · |pakq#ps1q| · · · |pskq#

and then progresses to the state sp(s∈↓T)?,a1,...,ak
, while removing the symbols

p(s ∈ ↓T)?q|pa1q| · · · |pakq from the tape; this is a matter of decoding the informa-
tion on the tape. For this decoding part we assume that Mpd is an RTM that halts
with the tape instance Jpoutq|pfinqK� · · ·�#̌ps1q| · · · |pskq#. Among the states
of Mpd we have the previously mentioned special states sp(s∈↓T)?,a1,...,ak

for all
(s ∈ ↓T?) ∈ {yes, no}, a1, . . . , ak ∈ Aτ , k ≤ B. A state sp(s∈↓T)?,a1,...,ak

is declared
final if, and only if, s ∈ ↓T , and it has an outgoing ai-transitions to the states nei
(1 ≤ i ≤ k).

After the decoding part, the action ai can be performed (while removing the
symbol #) and the fragment ends up in the state nei. The goal of the states nei
down to ne1 is to find the code psiq, replacing the symbols preceding psiq by �,
and to yield the tape instance Jpoutq|pfinqK� · · ·� >

psiq| . . . |pskq#.

11

Let Mpm be an RTM that, when started with above tape instance, moves the
found state code psiq to the right of the symbol K and halts with the tape instance
Jpoutq|pfinqKpsiq� · · ·�|̌psi+1q| . . . |pskq#.

Then, let Mpc be an RTM that, when started with the above tape instance,
empties the remaining part of the tape, moves the tape head back to the symbol K
and halts with the tape instance Jpoutq|pfinqǨpsiq.

The set of states of Step is defined as

SStep = (SMpd
∪ {ne1, . . . , neB} ∪ SMpm ∪ SMpc) \ (↓Mpd

∪ ↓Mpm ∪ ↓Mpc) ;

its initial states is defined as

↑Step = ↑Mpd
; and

its set of transitions is defined as

→Step = {(sp , d, τ, e,M, sp′) | (sp , d, τ, e,M, sp′) ∈ →Mpd
}

∪ {(sp(s∈↓T),a1,...,ak
,#, ai,�, R, nei)

| (s ∈ ST)? ∈ {yes, no}, a1, . . . , ak ∈ Aτ , k ≤ B, 1 ≤ i ≤ k}

∪ {(nek, 1, τ,�, R, nek), (nek, |, τ,�, R, nek−1) | 1 < k ≤ B}

∪ {(ne1, d, τ, e,M, sp′) | (↑Mpm , d, τ, e,M, sp′) ∈ →Mpm}

∪ {(sp , d, τ, e,M, sp′) | (sp , d, τ, e,M, sp′) ∈ →Mpm , sp′ ∈ SMpm \ ↓Mpm}

∪ {(sp , d, τ, e,M, ↑Mpc) | (sp , d, τ, e,M, sp′) ∈ →Mpm , sp′ ∈ ↓Mpm}

∪ {(sp , d, τ, e,M, sp′) | (sp , d, τ, e,M, sp′) ∈ →Mpc , sp′ ∈ SMpc \ ↓Mpc}

∪ {(sp , d, τ, e,M, ↑State) | (sp , d, τ, e,M, sp′) ∈ →Mpc , sp′ ∈ ↓Mpc} .

See Figure 4 for a schematic overview of the fragment Step. Note that in this
figure—for clarity reasons—only one of possibly many states sp(s∈↓)?,a1,...,ak

and
transition thereto is drawn.

↑Step Mpd
sp(s∈↓)?,a1,...,ak

Mpm

ne1 nei. . . nek. . . neB. . .

↑Mpc Mpc ↑State

a1[#/�]R ai[#/�]R

ak [#/�]R

τ[d/�]R
(d ∈ D)

τ[|/�]R

τ[d/�]R
(d ∈ D)

τ[|/�]R

τ[d/�]R
(d ∈ D)

τ[|/�]R

Figure 4: Diagram of the step fragment.

As mentioned before we can split the fragment up in two parts; we obtain the
following two lemmas.

Lemma 3.8. The fragment Step (using the auxiliary RTM Mpd) has a determin-
istic computation from

(↑Step, Jpoutq|pfinqǨp(s ∈ ↓T)?q|pa1q| · · · |pakq#ps1q| · · · |pskq#)

to (sp(s∈↓T)?,a1,...,ak
, Jpoutq|pfinqK� · · ·�#̌ps1q| · · · |pskq#).

Lemma 3.9. The fragment Step (using the auxiliary RTMs Mpm and Mpc) has a

deterministic computation from (nei, Jpoutq|pfinqK� · · ·� >
ps1q| · · · |pskq#) to (↑State, Jpoutq|pfinqǨpsiq).

12

�̌

Jpoutq|pfinqǨpsq

Jpoutq|pfinqǨp(s ∈ ↓)?q|pa1q| · · · |pakq#ps1q| · · · |pskq#

Init

State

Step
ai

Figure 5: Diagram of the deterministic computable transition system simulator.

Simulator. The simulator RTM M = (SM ,→M , ↑M , ↓M) is defined as the com-
bination of the fragments Init, State and Step defined above. The set of states of
M is defined as the union of the sets of states of all fragments:

SM = SInit ∪ SState ∪ SStep ;

the transition relation of M is the union of the transition relations of all fragments:

SM = →Init ∪→State ∪→Step ;

the initial state of M is the initial state of Init:

↑M = ↑Init ; and

the set of final states of M consists of the states of Step sp(s∈↓T)?,a1,...,ak
where s

is a final state in T

↓M = {sp(s∈↓T)?,a1,...,ak
| s ∈ ↓T} .

Fig. 5 schematically illustrates how the fragments are combined to constitute
the simulator M.

Theorem 3.10. For every boundedly branching computable transition system T
there exists a reactive Turing machine M such that T(M) ↔∆

b T .

Proof. Consider the RTM M of which the definition is sketched above. Using
Lemma 3.6 we define the following relation:

R↑={(↑T , t) | t ∈ {(↑Init, �̌), . . . , (↑State, Jpoutq|pfinqǨp↑Tq)}} .

Using Lemmas 3.9, 3.7 and 3.8 we define the following relation for each s ∈ ST :

Rs= {(s, t) | t ∈ 〈(nei, Jpoutq|pfinqK� · · ·� >
ps1q| · · · |pskq#), . . . ,

(sp(s∈↓T)?,a1,...,ak
, Jpoutq|pfinqK� · · ·�#̌ps1q| · · · |pskq#)〉} .

We can now define the relation

R = R↑ ∪
⋃

s∈ST

Rs .

The relation R is a divergence-preserving branching bisimulation between T(M)
and T.

Combining the above theorem with Proposition 3.4 we can conclude that re-
active Turing machines can simulate effective transition systems up to branching
bisimilarity, but, in view of Example 3.5, not in a divergence-preserving manner.

Corollary 3.11. For every effective transition system T there exists a reactive
Turing machine M such that T(M) ↔b T.

13

Note that all computations involved in the simulation of T are deterministic
(see Lemmas 3.6–3.9). If M is non-deterministic, then this is due to some state
sp(s∈↓)?,a1,...,ak

with some action a occurs more than once in the sequence a1, . . . , ak.
It follows that a deterministic computable transition system can be simulated up
to divergence-preserving branching bisimilarity by a deterministic reactive Turing
machine. We proceed to formally state this result below.

Definition 3.12. A transition system T = (S,→, ↑, ↓) is deterministic if, for every
state s ∈ S and for every a ∈ Aτ , s

a
−−→ s1 and s

a
−−→ s2 implies s1 = s2.

Clearly, if T is deterministic, then, for every state s in T, |out(s)| ≤ |Aτ |. So
a deterministic transition system is boundedly branching, and therefore we get the
following corollary to Theorem 3.10.

Corollary 3.13. For every deterministic computable transition system T there ex-
ists a deterministic reactive Turing machine M such that T(M) ↔∆

b T.

3.2 Parallel Composition

Using Theorem 3.10 we can now also establish that a parallel composition of RTMs
can be simulated, up to divergence-preserving branching bisimilarity, by a single
RTM. To this end, note that the transition systems associated with RTMs are
boundedly branching and computable. Further note that the parallel composition
of boundedly branching computable transition systems is again computable. It
follows that the transition system associated with a parallel composition of RTMs
is boundedly branching and computable, and hence, by Theorem 3.10, there exists
an RTM that simulates this transition system up to divergence-preserving branching
bisimilarity. Thus we get the following corollary.

Corollary 3.14. For every pair of reactive Turing machines M1 and M2 and for
every set of communication channels C there exists an RTM M such that T(M) ↔∆

b

T([M1 ‖ M2]C).

3.3 Universality

In the theory of computation a classical and central notion is the universal Turing
machine: a Turing machine that can simulate any arbitrary Turing machine on
arbitrary input. Here, the (encoded) description of a Turing machine and the input
are present on the tape beforehand. In this subsection we propose a notion of
universal RTM and investigate to what extent such universal RTMs exist. Naturally,
our notion of universal RTM should reflect our desiderata for introducing RTMs:

Firstly, since our main aim is to formalise communication explicitly, we want a
universal RTM to first receive input via communication rather than finding it on
its tape at the beginning of its operation (recall our assumption that the tape of
our RTM is initially empty). To this end, we associate with the encoding pMq of
some RTM M (see [21]) an RTM M that sends pMq along channel u and then
terminates. This RTM M will be put in parallel with the universal RTM to be
defined, abstracting from communication over the channel u.

Secondly, the simulation of other Turing machines by a universal Turing ma-
chine is in the classical theory up to language equivalence. For example, Hopcroft,
Motwani and Ullman define in [18] the universal Turing machine for the so-called
universal language. Language equivalence is, however, too coarse if one is inter-
ested in the behaviour of an RTM rather than only the function it computes. Our
notion of universal RTM should simulate every RTM up to divergence-preserving
branching bisimulation instead of language equivalence.

14

An RTM U is universal (given some coding of RTMs) if for every RTM M it
holds that T(M) ↔∆

b

[

M ‖ U
]

{u}
. However, we will show now that such a universal

RTM U does not exist.

Proposition 3.15. There is no universal RTM up to divergence-preserving branch-
ing bisimulation.

Proof. Assume the existence of a universal RTM U . Since U is an RTM, it has an
associated transition system that has a branching degree bounded by, say, B. Now,
assume an RTM M such that T(M) has no divergence and has a branching degree
bounded by B + 1. In particular, T(M) has a state s that realises the branching
degree bound by having transitions a1, . . . , aB+1 to B + 1 pairwise non-bisimilar
target states. If U were to simulate M up to divergence-preserving branching
bisimulation, then there is a state s′ in

[

M ‖ U
]

{u}
related to s that cannot do

any (inert) τ -steps, but still has to simulate all transitions of s. This means that s′

must have a branching degree of B + 1. This is a contradiction.

Therefore, if we insist on having simulation up to divergence-preserving branch-
ing bisimulation, then the best possible result is to define a separate universal RTM
for each possible branching degree.

Definition 3.16. An RTM UB is universal up to branching degree B if for ev-
ery RTM M with T(M) bounded by branching degree B it holds that T(M) ↔∆

b
[

M ‖ UB

]

{u}
.

We now present the construction of a collection of RTMs UB for all branching
degree bounds B.

For the remainder of this section let M = (SM ,→M , ↑M , ↓M) be an RTM such
that the branching degree of T(M) is bounded by B. From our Definition 2.5,
Proposition 3.2, the explanations in [19], and by applying some standard recursion-
theoretic techniques such as the enumeration theorem (see [21]), it can be shown
that the codes of the functions out() and fin() belonging to T(M) are recursively
computable from pMq. Therefore, we can reuse the simulator RTM presented
before; it suffices to adapt its initialisation fragment.

Universal initialisation fragment. Instead of writing the codes of the functions
out() and fin() and the initial state directly on the tape, the universal initialisation
fragment InitU first receives the code pMq of an arbitrary M along some dedicated
channel u, yielding the tape instance pMq. Let Mri be an RTM that handles the
receiving and storing of the code pMq over channel u when started from an empty
tape.

Then, it recursively computes, from pMq, the codes of the functions out()
and fin(), and the initial state ↑M of T(M) and stores these on the tape. As
mentioned before, these functions can be computed recursively, and let Mci be the
deterministic Turing machine that, when started from the tape instance pMq halts
with the tape instance Jpoutq|pfinqǨp↑Mq.

The set of states of InitU is defined as

SInitU = (SMri ∪ SMci) \ (↓Mri ∪ ↓Mci) ,

its initial state is defined as

↑InitU = ↑Mri ; and

15

its set of transitions is defined as

→InitU = {(in , d, τ, e,M, in ′) | (in , d, τ, e,M, in ′) ∈ →Mri , in ′ ∈ SMri \ ↓Mri}

∪ {(in , d, τ, e,M, ↑Mci) | (in , d, τ, e,M, in ′) ∈ →Mri , in ′ ∈ ↓Mri}

∪ {(in , d, τ, e,M, in ′) | (in , d, e,M, in ′) ∈ →Mci , in ′ ∈ SMci \ ↓Mci}

∪ {(in , d, τ, e,M, ↑State) | (in , d, e,M, in ′) ∈ →Mci , in ′ ∈ ↓Mci}

Note that Lemma 3.6 holds for this fragment InitU as well, albeit that the path
constitutes of a different set of configurations.

Lemma 3.17. The fragment InitU has a deterministic computation from (↑InitU, �̌)
to (↑State, Jpoutq|pfinqǨp↑Mq).

Universal RTMs. Now, when the universal initialisation fragment sets up the
simulation, the state and step fragments, that have already been defined in the
previous section, can perform the simulation as before. We define the universal
RTM UB = (SUB ,→UB , ↑UB , ↓UB) for each branching degree B as the combination
of the fragments InitU, State and Step defined above. Recall that the fragment
Step contains states for every possible menu but that these menus have a branching
degree that is bounded by B. Because of this we can reuse the step fragment; the
definition of fragment is independent of the transition function it is simulating and
only parametrised by the branching degree bound B.

The set of states of each particular UB is defined as the union of the sets of
states of the fragments:

SUB = SInitU ∪ SState ∪ SStep ;

the transition relation of UB is the union of the transition relations of all fragments:

SUB = →InitU ∪→State ∪→Step ;

the initial state of UB is the initial state of InitU:

↑UB = ↑InitU ; and

the set of final states of UB consists of the states of Step sp(s∈↓T)?,a1,...,ak
where s

is a final configuration in T(M)

↓UB = {sp(s∈↓T)?,a1,...,ak
| s ∈ ↓T} .

Theorem 3.18. For every B there exists an RTM UB such that, for all RTMs M
with a branching degree bounded by B, it holds that T(M) ↔∆

b

[

M ‖ UB

]

{u}
.

If we drop the requirement that the simulation has to be divergence-preserving,
we can find a single universal RTM. We replace the Turing machine Mci in the
fragment InitU by an adapted version that besides calculating out() and fin() also
modifies out() to reduce the branching degree to at most 2 [2]. This is, necessarily,
at the cost of introducing divergence. The resulting universal RTM U ′ is universal
up to branching bisimulation.

Theorem 3.19. There exists an RTM U ′ such that, for all RTMs M, it holds that
T(M) ↔b

[

M ‖ U ′
]

{u}
.

16

4 Explicit Interaction

In this section we show that, up to divergence-preserving branching bisimilarity, ev-
ery executable transition system can be specified using the process theory TCPτ [1].
We do this by showing, for any given RTM, the construction of a finite recursive
specification over TCPτ that simulates its behaviour. Our specification will consist
of a finite specification of a process that is a translated version of the finite con-
trol of the RTM, and a finite specification of tape memory. We shall prove that
the parallel composition of these specifications specifies a transition system that is
divergence-preserving branching bisimilar with the transition associated with the
RTM. Further note that our specification deals explicitly with the interaction be-
tween the finite control and the tape of an RTM. This result follows up on results in
earlier work [5, 6] where we have shown in similar vain that the interaction within
pushdown automata and bag automata can be made explicit.

It follows from results obtained by Vaandrager in [25] that every TCPτ -specification
induces an effective transition system. Hence, by Corollary 3.11, we also get the
converse: every transition system definable in TCPτ is executable up to branching
bisimilarity.

Since transition systems associated with TCPτ -specifications can be simulated,
up to branching bisimulation, by a finite control interacting with a queue (we will
later see that the tape process wraps a queue with some finite control), we can look
upon the queue as the prototypical TCPτ process.

We could argue that TCPτ -specifications can be considered as the process-
theoretic counterparts of unrestricted grammars. In automata and formal language
theory a hierarchy of classes of languages with different expressivity is obtained
by adding/dropping restrictions on the left-hand and right-hand side of grammars.
In process theory, the stricter recursive specification format is used, and different
classes of expressivity are obtained by allowing more/less operators, notably the
parallel composition here, in the right-hand sides. This we have also shown for
regular expressions in [7].

4.1 TCPτ

First, we introduce an instance of TCPτ , for the full definition see [1], with the
specific form of handshaking communication from [4]. TCPτ is a generic process
algebra encompassing key features of ACP, CCS and CSP.

Recall that we reuse the finite set C of channels and set of data D�; we introduce
the set of special actions I = {c?d, c!d, c?!d | d ∈ D�, c ∈ C}. The actions c?d, c!d,
c?!d respectively denote the event that a datum d is received, sent, or communicated
along channel c. Let N be a countably infinite set of names. The set of process
expressions P is generated by the following grammar (a ∈ Aτ ∪ I,N ∈ N , c ∈ C):

p ::= 0 | 1 | a.p | p ·p | p+p | p ‖ p | p T p | p | p | ∂c(p) | τc(p) | N .

Let us briefly comment on the operators in this syntax. The constant 0 denotes
deadlock, the unsuccessfully terminated process. The constant 1 denotes skip, the
successfully terminated process. For each action a ∈ A∪I there is a unary operator
a. denoting action prefix; the process denoted by a.p can do an a-transition to the
process denoted by p. The binary operator · denotes sequential composition. The
binary operator + denotes alternative composition or choice. The binary operator
‖ denotes parallel composition; actions of both arguments are interleaved, and in
addition a communication c?!d of a datum d on channel c can take place if one
argument can do an input action c?d that matches an output action c!d of the other
component. The left-merge T and communication merge | are auxiliary operators
needed for the axiomatisation that we will see later on. The unary operator ∂c(p)

17

encapsulates the process p in such a way that all input actions c?d and output
actions c!d are blocked (for all data) so that communication is enforced. Finally,
the unary operator τc(p) denotes abstraction from communication over channel c
in p by renaming all communications c?!d to τ -transitions. We shall abbreviate
τc(∂c(p)) with [p]c.

A recursive specification E is a set of equations of the form: N
def
= p, with as

left-hand side a name N and as right-hand side a process expression p. It is required
that a recursive specification E contains, for every N ∈ N , at most one equation
with N as left-hand side; this equation will be referred to as the defining equation
for N in N . Furthermore, if some name occurs in the right-hand side of some
defining equation, then the recursive specification must include a defining equation
for it.

We use Structural Operational Semantics [20] to associate a transition relation
with process expressions: let→ be theAτ -labelled transition relation induced on the
set of process expressions by operational rules in Table 1. Note that the operational
rules presuppose a recursive specification E.

Definition 4.1. Let E be a recursive specification and let p be a process expression.
We define the labelled transition system TE(p) = (Sp ,→p , ↑p , ↓p) associated with p
and E as follows:

1. the set of states Sp consists of all process expressions reachable from p;

2. the transition relation →p is the restriction to Sp of the transition relation
→ defined on all process expressions by the operational rules in Table 1, i.e.,
→p = → ∩ (Sp ×Aτ × Sp).

3. the process expression p is the initial state, i.e. ↑p = p; and

4. the set of final states consists of all process expressions q ∈ Sp such that q↓,
i.e., ↓p = ↓ ∩ Sp .

To be able to give concise proofs that certain process expressions are divergence-
preserving branching bisimilar, it is convenient to proceed by equational reasoning.
We shall use the equations in Table 2, see [1] for an explanation of the axioms,
and the proof rule RSP [1], which is based on the assumption that every guarded
recursive specification has a unique solution. (Actually, the guardedness of the
specifications below follows from the fact that they are τ -guarded and τ -founded,
as defined in [9].)

We should, of course, establish that an equational reasoning based on the axioms
in Table 2 is sound, i.e., that it indeed proves that the equated process expressions
are divergence-preserving branching bisimilar. For this it suffices to prove that the
axioms in Table 2 and RSP are sound with respect to some congruence included
in divergence-preserving branching bisimilarity. (Note that divergence-preserving
branching bisimilarity is not a congruence with respect to the operator + for the
same reason as why branching bisimilarity is not a congruence with respect to
+). The way we obtain a congruence included in divergence-preserving branching
bisimilarity is standard: we define a rooted version:

Definition 4.2. A divergence-preserving branching bisimulation R from T1 to T2

is called rooted if it meets the following root-conditions:

1. for all states s′1 ∈ S1, whenever ↑1
a

−−→ s′1, then there exists a state s′2 such
that ↑2

a−−→ s′2 and s′1 R s′2;

2. for all states s′2 ∈ S2, whenever ↑2
a

−−→ s′2, then there exists a state s′1 such
that ↑1

a−−→ s′1 and s′1 R s′2;

18

1↓ a.p
a−−→ p

p
a−−→ p′

p + q a−−→ p′
q

a−−→ q′

p + q a−−→ q′
p↓

(p + q)↓

q↓

(p + q)↓

p a−−→ p′

p · q a−−→ p′ · q

p↓ q a−−→ q′

p · q a−−→ q′
p↓ q↓

(p · q)↓

p
a−−→ p′

p ‖ q a−−→ p′ ‖ q

q
a−−→ q′

p ‖ q a−−→ p ‖ q′
p↓ q↓

(p ‖ q)↓

p
c!d−−→ p′ q

c?d−−−→ q′

p ‖ q
c?!d−−→ p′ ‖ q′

p
c?d−−−→ p′ q

c!d−−→ q′

p ‖ q
c?!d−−→ p′ ‖ q′

p a−−→ p′ a 6= c?d, c!d

∂c(p)
a−−→ ∂c(p

′)

p↓

∂c(p)↓

p c?!d−−→ p′

τc(p)
τ−−→ τc(p

′)

p a−−→ p′ a 6= c?!d

τc(p)
a−−→ τc(p

′)

p↓

τc(p)↓

p
a−−→ p′ (N

def
= p) ∈ E

N
a−−→ p′

p↓ (N
def
= p) ∈ E

N ↓

Table 1: Operational rules for a recursive specification E.

A1 x+ y = y + x A6 x+ 0 = x

A2 (x+ y) + z = x+ (y + z) A7 0 · x = 0

A3 x+ x = x A8 x · 1 = x

A4 (x+ y) · z = x · z + y · z A9 1 · x = x

A5 (x · y) · z = x · (y · z) A10 a.x · y = a.(x · y)

M x ‖ y = x T y + y T x+ x | y B a.(τ.(x+ y) + x) = a.(x+ y)

LM1 0 T x = 0 SC1 x | y = y | x
LM2 1 T x = 0 SC2 x ‖ 1 = x

LM3 a.x T y = a.(x ‖ y) SC3 1 | x+ 1 = 1

LM4 (x+ y) T z = x T z + y T z SC4 (x ‖ y) ‖ z = x ‖ (y ‖ z)
CM1 0 | x = 0 SC5 (x | y) | z = x | (y | z)
CM2 (x+ y) | z = x | z + y | z SC6 (x T y) T z = x T (y ‖ z)
CM3 1 | 1 = 1 SC7 (x | y) T z = x | (y T z)
CM4 a.x | 1 = 0 SC8 x T 0 = x · 0
CM5 c!d.x | c?d.y = c?!d.(x ‖ y) SC9 x T τ.y = x T y

CM6 a.x | b.y = 0 if {a, b} 6= {c!d, c?d} SC10 x | τ.y = 0

D1 ∂c(1) = 1 T1 τc(1) = 1

D2 ∂c(0) = 0 T2 τc(0) = 0

D3 ∂c(a.x) = 0 if a = c?d, c!d T3 τc(a.x) = a.τc(x) if a 6= c?d, c!d
D4 ∂c(a.x) = a.∂c(x) if a 6= c?d, c!d T4 τc(a.x) = τ.τc(x) if a = c?d, c!d
D5 ∂c(x+ y) = ∂c(x) + ∂c(y) T5 τc(x+ y) = τc(x) + τc(y)

Table 2: The axioms of the process theory TCPτ (a ∈ A, d ∈ D�).

3. if ↑1↓1, then ↑2↓2;

4. if ↑2↓2, then ↑1↓1.

The transition systems T1 and T2 are divergence-preserving rooted branching bisim-

19

ilar (notation: T1 ↔∆
rb T2) if there exists a divergence-preserving branching bisimu-

lation from T1 to T2 that meets the above mentioned root-conditions.

Since divergence-preserving branching bisimilarity is included in rooted divergence-
preserving branching bisimilarity, we have the following proposition that we will use
in the proofs below.

Proposition 4.3. The equational theory given by Table 2 is sound for the model
of transition systems modulo divergence-preserving branching bisimilarity.

Note that the KFAR axiom [2] is not a part of the axioms because that could lead
to the removal of τ -loops which would break the divergence-preserving property.

4.2 Correspondence

We prove that for every reactive Turing machine M there exists a finite recursive
TCPτ -specification EM and process expression p such that T(M) ↔∆

b TEM(p).
For clarity purposes we will present EM in two steps. First, we will consider a
finite recursive specification a tape process ET and show its correspondence with
an infinite specification of the tape process. Then, we will present a fair translation
of the finite control of an RTM into a finite recursive specification Efc . We conclude
by showing that the correspondence of the combined finite specification EM with
the original RTM M holds.

The tape. The following infinite recursive specification E∞
T specifies the desired

behaviour and interface of a tape process TδL ďδR
for every possible tape instance

(d ∈ D�, δL, δR ∈ D∗
�
). Each name has an equation that expresses that the datum

d under the head can be sent over channel r (read), a datum e can be received
over channel w (write) to replace the datum under the head, and commands can be
received over channel m (move) to move the head one position to the left (onto δL)
or right (onto δR); each name has the following defining equation:

TδLďδR

def
= 1+ r!d.TδL ďδR

+
∑

e∈D∗
�

w?e.TδLěδR +m?L.TδL<dδR +m?R.TδLd >δR .

Notice that this specification allows reading and writing and moving independently,
as it was also originally defined by Turing in [23].

The specification above of the tape process is clearly infinite, since we have a
name for each possible tape instance. Our aim is, however, to have a finite speci-
fication. In earlier work by Baeten, Bergstra and Klop in [2] a finite specification
of a Turing machine is given in ACPτ to simulate computable transition systems
up to bisimilarity; the conventional Turing machine is simulated using finite control
in parallel with two stacks. Their approach to model a tape as two stacks cannot
be reused in our settings, which allows for states that can be terminating and have
outgoing transitions at the same time. Their specification of the stack does not
allow for intermediate termination, and it is not clear how to adapt it, so that it
does. Instead, we model the tape using a (first-in first-out) queue, which does allow
for intermediate termination.

The following infinite linear recursive specification E∞
Q specifies the behaviour of

the process Qδ modelling a queue with contents δ that receives input over channel
i and sends output over channel o (for every d ∈ D�, δ ∈ D∗

�
):

Qε
def
= 1+

∑

d∈D

i?d.Qd , Qδd
def
= 1+ o!d.Qδ +

∑

e∈D

i?e.Qeδd .

20

Since we want the queue process to have a finite specification too, we use as a ba-
sis for the finite version the recursive specification originally given by Bergstra and
Klop in [10], which uses six variables, parallel composition, communication over an
input, output and auxiliary channel and abstraction. Bezem and Ponse have shown
in [11] that this finite recursive specification is branching bisimilar (without the
terminations conditions 3 and 4 of Definition 2.8) with the infinite recursive speci-
fication given above. In their proof, they also show that the finite recursive speci-
fication does not have infinite τ -paths, so in effect they show divergence-preserving
branching bisimilarity. The following specification EQ is an adaptation of the finite
specification of Bergstra and Klop defining a version of the queue that always has
the option to terminate.

Q i,j
k

def
= 1+

∑

d∈D�

i?d.
[

Q i,k
j ‖ (1+ j!d.Qk,j

i)
]

k
for all {i, j, k} = {i, o, l}.

The adaptation with respect to Bergstra and Klop’s specification consists of the ad-
dition of a 1-summand to the defining equation of every variable and to right-most
component of the therein contained parallel composition. As a result, termina-
tion can occur in every state of the queue, and no other change in behaviour is
incurred. Thus, similarly to [11] it can be proved that our infinite recursive specifi-
cation is divergence-preserving branching bisimilar—this time with the termination
conditions—with the finite recursive specification given above.

Lemma 4.4. We have that Qε ↔∆
b Q io

l .

This lemma also allows us to use the more concise notation of the infinite spec-
ification, Qδ for some δ ∈ D�

∗, for a state of the queue process given by the finite
specification in the proofs below.

We can now define the finite recursive specification of the tape process ET as the
finite recursive specification of the queue EQ and the following equations (d ∈ D�):

Hd
def
= 1+ r!d.Hd +

∑

e∈D�

w?e.He +m?L.H L
d +m?R.HR

d ,

H L
d

def
= i!d.

(

∑

e∈D�

o?e.He + o?⊥.i!$.i!⊥.Back
)

,

Back
def
=

∑

d∈D�

o?d.i!d.Back + o?$.H� ,

HR
d

def
= i!$.i!d.

(

∑

e∈D�

o?e.Fwde + o?⊥.Fwd⊥

)

,

Fwdd
def
=

∑

e∈D�

o?e.i!d.Fwd e + o?⊥.i!d.Fwd⊥ + o?$.Hd ,

Fwd⊥
def
=

∑

e∈D�

o?e.i!⊥.Fwde + o?$.i!⊥.H� .

Unlike the stack, the queue allows us to reach any arbitrary data element con-
tained within in a non-destructive way. We can repeatedly remove a datum from
the queue over channel o and then insert it over channel i; we call this shifting.
Doing this once is called a shift operation. Although shifting suggests the usage of a
queue in a circular fashion, we have to map the (infinite and linear) data structure
of the tape onto the queue. We use the queue to store only the part of the tape
to the left of the head δL and to the right of the head δR and we keep the datum
under the head d in a separate head process Hd . Additionally we use the marker
⊥ as special queue data element to separate the left from the right part and also

21

δR δL⊥

dHd :
insert (i) remove (o)

QδR⊥δL
:

Figure 6: Diagram of the tape process.

to indicate that the tape can be extended on the left or on the right, when needed,
by inserting elements between ⊥ and δL or between δR and ⊥ respectively. Fig. 6
illustrates the mapping of the tape instance δLďδR and a shift operation.

In the recursive specification ET above the main process Hd models the situation
that the datum d is at the position of the head. This process Hd is put in parallel
with the queue process QδR⊥δL and provides the interface to the tape. Read and
write operations for the tape are dealt with by the head process without accessing
the queue; shifting only occurs when a move is requested. This is another reason
to have a separate head process that directly handles a read and write operation
without touching the queue: if the datum at the position of the head would be on
the queue as well, every read or write operation for the tape would cause shifting
and require additional operations to get the queue in the right state again.

As mentioned above, moving the head to the left—handled by H L
d —requires

just one shift operation. However, we have to make sure not to remove the special
marker ⊥ after inserting datum d in the case that the sequence to the left of the
head (δL) is empty. If this happens, we insert a search marker $ followed by ⊥ and
cycle through the queue completely until $ reappears. We get the following lemma
that establishes that a move to the left behaves as expected using a fixed number
of internal steps.

Lemma 4.5. For every d ∈ D�, δL, δR ∈ D�

∗ we have that

[

H L
d ‖ QδR⊥δL

]

io
↔∆

b τ.

{

[HdL ‖ QdδR⊥ζL]io if δL = ζLdL ,

[H� ‖ QdδR⊥]io if δL = ε .
(1)

Proof. We prove the validity of equation 1 by means of an equational reasoning
using the axioms of Table 2 and RSP. Then, the lemma follows by Proposition 4.3.
We distinguish two cases for δL in

[

H L
d ‖ QδR⊥δL

]

io
:

1. If δL = ζLdL, then H L
d moves the tape head to the left by performing one shift

operation. So, first the datum under the head d is prefixed to the sequence to
right of the head (δR), and then the right-most datum (dL) of the sequence
to the left of the head (δL) is removed and put it under the head (see also
Figure 6).

[

H L
d ‖ QδR⊥ζLdL

]

io
= τ.τ.

[

H L
dL

‖ QdδR⊥ζL

]

io
= τ.

[

H L
dL

‖ QdδR⊥ζL

]

io
.

2. If δL = ε, then H L
d initially removes the special ⊥ symbol from the queue,

inserts the special search marker $, reinserts ⊥ and then switches to Back .
This will shift through the queue contents until $ is reached. At this point
the queue is consistent again, so it removes the search marker and the blank
symbol is put under the head.

[

H L
d ‖ QδR⊥

]

io
= τ.τ.τ.τ. [Back ‖ Q⊥$dδR]io

= τ.τ.τ.τ.τ2|dδR|. [Back ‖ QdδR⊥$]io

= τ.τ.τ.τ.τ2|dδR|.τ. [H� ‖ QdδR⊥]io
= τ. [H� ‖ QdδR⊥]io .

22

We can observe that there is a fixed upper bound of 2|dδR| + 5 to the number
of τ -steps (in the second case). Hence, there is no divergence.

Because shifting through the queue contents only goes in one direction, we have
to use a different approach for moving the head to the right, which is handled by
HR

d . This time we need to have the left-most datum of the sequence to the right of
the queue (δR) and we will have to shift through the entire queue contents to reach
it. We do this by inserting a search marker $ into the queue and shifting through it
using a lookahead that remembers the datum that was previously removed from the
queue. Once we encounter the search marker, we put this previously encountered
datum under the head.

Lemma 4.6. For every d ∈ D�, δL, δR ∈ D�
∗ we have that

[

HR
d ‖ QδR⊥δL

]

io
↔∆

b τ.

{

[HdR ‖ QζR⊥δLd]io if δR = dRζR ,

[H� ‖ Q⊥δLd]io if δR = ε .
(2)

Proof. We prove the validity of equation 1 by means of an equational reasoning
using the axioms of Table 2 and RSP. Then, the lemma follows by Proposition 4.3.

[

HR
d ‖ QδR⊥δL

]

io
= τ.τ.τ2|δL|+1. [Fwd⊥ ‖ QδLd$δR]io

=

{

τ.τ.τ2|δL|+1.τ2|dRδR|.τ. [HdR ‖ QδR⊥δLd]io if δR = dRζR

τ.τ.τ2|δL|+1.τ.τ. [H� ‖ Q⊥δLd]io if δR = ε

= τ.

{

[HdR ‖ QδR⊥δLd]io if δR = dRζR

[H� ‖ Q⊥δLd]io if δR = ε .

We can observe that there is a fixed upper bound of 2|δLdRδR|+4 to the number
of τ -steps. Hence, there is no divergence.

Putting everything together, we get the following result that shows that be-
havioural specification of the tape E∞

T is divergence-preserving branching bisimilar
with the finite specification ET .

Lemma 4.7. For each tape instance δLďδR (δL, δR ∈ D∗
�
, d ∈ D�) we have that

TδLďδR
↔∆

b [Hd ‖ QδR⊥δL]io.

Proof. We prove the validity of equation by means of an equational reasoning using
the axioms of Table 2 and RSP. Then, the lemma follows by Proposition 4.3.

TδLďδR
= [Hd ‖ QδR⊥δL]io

Now, expand the expression using axiom M and move the initial actions of Hd

outside:

= 1+ r!d. [Hd ‖ QδR⊥δL]io + w?e. [He ‖ QδR⊥δL]io

+m?L.
[

H L
d ‖ QδR⊥δL

]

io
+m?R.

[

HR
d ‖ QδR⊥δL

]

io

By applying Lemma 4.5 and 4.6 and axiom B we get:

= 1+ r!d. [Hd ‖ QδR⊥δL]io + w?e. [He ‖ QδR⊥δL]io

+m?L.τ.

{

[HdL ‖ QdδR⊥ζL]io if δL = ζLdL

[H� ‖ QdδR⊥]io if δL = ε

+m?R.τ.

{

[HdR ‖ QζR⊥δLd]io if δR = dRζL

[H� ‖ Q⊥δLd]io if δR = ε

= 1+ r!d.TδL ďδR
+ w?e.TδLěδR +m?L.TδL<dδR +m?R.TδLd >δR .

23

We can observe that there are no τ -loops introduced by the specification. When
moving left or right either one shift operation happens or we shift until the search
marker is found, both yield a finite number of τ -steps. Hence, no divergence is
introduced.

Finite control. Let M = (S,→, ↑, ↓) be some RTM. We can write its associated
transition system T(M) as a linear recursive specification E∞

M, which is infinite if
T(M) is infinite. Here, linear means that only 0,1, action prefix and + are used in
the right-hand side (compare with right-linear grammars).

This recursive specification E∞
M contains a name Ss,δLďδR

for each reachable con-

figuration (s, δLďδR) (s ∈ S, d ∈ D�, δL, δR ∈ D�
∗) from the initial configuration

(↑, �̌). Each name Ss,δLďδR
is defined by the following equation:

Ss,δLďδR

def
=

∑

(s,d,a,e,L,t)∈→

a.St,δL<eδR +
∑

(s,d,a,e,R,t)∈→

a.St,δLe >δR [+ 1]s↓ .

Here, [+ 1]s↓ indicates that the 1-summand is only present if s is a final state. By
construction the transition system TE∞

M
(S↑,�̌) is isomorphic with T(M).

Proposition 4.8. The transition system T(M) is divergence-preserving branching
bisimilar with TE∞

M
(S↑,�̌).

Now that we have captured the behaviour of an RTM with an infinite recursive
specification, it remains to construct a finite recursive specification and show that
it is divergence-preserving branching bisimilar. We now present a finite recursive
specification Efc for the finite control of M. For every state s ∈ S and datum
d ∈ D� we add the name Cs,d to Efc with the following equation (s, t ∈ S, a ∈ Aτ ,
d, e ∈ D�, M ∈ {L,R}):

Cs,d
def
=

∑

(s,d,a,e,M,t)∈→



a.w!e.m!M.
∑

f∈D�

r?f.Ct,f



 [+ 1]s↓ .

In Efc each name Cs,d represents the part of the finite control of the RTM
execution process where a transition can be chosen based on the current state and
datum under the head. Once some action a is non-deterministically chosen, the
tape—as explained above—is instructed over channel w to write datum e on the
place under the head, then it is instructed over channel m to move the head to the
left or right and finally over channel r to read the datum f under the new position
of the head.

Now, if we put the finite control in parallel with the tape, we can obtain the
following lemma.

Lemma 4.9. For each configuration (s, δLďδR) of a reactive Turing machine M
we have that Ss,δLďδR

↔∆
b

[

Cs,d ‖ TδL ďδR

]

rwm
.

Proof. In this proof we want to relate each reachable configuration, represented by
the name Ss,δLďδR

, from the initial configuration of some RTM M to a name Cs,d

in the finite control specification Efc put in parallel with a tape process with the
corresponding contents, while encapsulating and abstracting from communication
between the finite control and tape process. For example, if we have an RTM that

has the configuration (s, δLďδR) and has the transition s
a[d/e]L
−−−−−−→ t in its transition

relation, then the desired relation between a step in (a part of) the transition system
associated with the RTM and the transitions in the specification are shown in Fig. 7.

24

(s, δLďδR)

(t, ζLďLeδR)

[

Cs,d ‖ TδLďδR

]

rwm

[

w!e.m!L.
∑

f∈D�
r?f.Ct,f ‖ TδLďδR

]

rwm

[

Ct,dL ‖ TζLďLeδR

]

rwm

a a

Figure 7: Relation between an RTM transition and specification transitions.

We now proceed to show that E∞
M is branching bisimilar with Efc ∪ E∞

T by
means of equational reasoning using the axioms of Table 2 and RSP. Then, the
lemma follows by Proposition 4.3.

Ss,δLďδR
=

[

Cs,d ‖ TδLďδR

]

rwm

Unfold
[

Cs,d ‖ TδL ďδR

]

rwm
and, per transition, move the action outside (by apply-

ing almost all of the axioms).

=
∑

(s,d,a,e,M,t)∈→

a.



w!e.m!M.
∑

f∈D�

r?f.Ct,f ‖ TδLďδR





rwm

[+ 1]s↓

Three communications with the tape follow by axiom CM5 and are moved outside
by D1–D5 and TI1–TI5.

=
∑

(s,d,a,e,M,t)∈→

a.τ.



m!M.
∑

f∈D�

r?f.Ct,f ‖ TδL ěδR





rwm

[+ 1]s↓

=
∑

(s,d,a,e,L,t)∈→

a.τ.τ.





∑

f∈D�

r?f.Ct,f ‖ TδL<eδR





rwm

+

∑

(s,d,a,e,R,t)∈→

a.τ.τ.





∑

f∈D�

r?f.Ct,f ‖ TδLe >δR





rwm

[+ 1]s↓

=
∑

(s,d,a,e,L,t)∈→

a.τ.τ.τ. [Ct,f ‖ TδL<eδR]rwm +

∑

(s,d,a,e,R,t)∈→

a.τ.τ.τ.
[

Ct,f ‖ TδLe >δR

]

rwm
[+ 1]s↓

We can remove the three τ -steps by axiom B.

=
∑

(s,d,a,e,L,t)∈→

a. [Ct,g ‖ TδL<eδR]rwm+

∑

(s,d,a,e,R,t)∈→

a.
[

Ct,g′ ‖ TδLe >δR

]

rwm
[+ 1]s↓

=
∑

(s,d,a,e,L,t)∈→

a.St,δL<eδR +
∑

(s,d,a,e,R,t)∈→

a.St,δLe >δR [+ 1]s↓ .

25

We can observe that no τ -loops or infinite τ -paths are introduced by the specifi-
cation, nor by the queue as is shown in Lemma 4.5 and 4.6. Hence, there is no
divergence.

We have now established a finite version of the specifications for all three com-
ponents of an RTM. This brings us to the following main result.

Theorem 4.10. For every reactive Turing machine M there exists a finite recursive
specification EM and process expression p such that T(M) ↔∆

b TEM(p).

Proof. ChooseEM = Efc∪ET and p = [C↑,� ‖ [H� ‖ Q⊥]io]rwm. Then the theorem
follows from Property 4.8 and Lemmas 4.4, 4.7, and 4.9.

If we combine the above theorem with Theorem 3.10, Corollary 3.11 and Corol-
lary 3.13 we get the following corollaries.

Corollary 4.11. Every boundedly branching computable transition system and ev-
ery deterministic computable transition system is definable, up to to divergence-
preserving branching bisimilarity, by a finite TCPτ -specification.

Corollary 4.12. Every effective transition system is definable, up to branching
bisimilarity, by a finite TCPτ -specification.

Acknowledgement. We thank Herman Geuvers for discussions and pointers to
related work, and Clemens Grabmayer for suggesting to us the term reactive Turing
machine.

References

[1] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra (Equational
Theories of Communicating Processes). Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 2009.

[2] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. On the consistency of
Koomen’s fair abstraction rule. Theoretical Computer Science, 51:129–176,
1987.

[3] J. C. M. Baeten, P. J. L. Cuijpers, B. Luttik, and P. J. A. van Tilburg. A
process-theoretic look at automata. In Proceedings of FSEN 2009, number
5961 in LNCS, pages 1–33, Berlin-Heidelberg, 2009. Springer-Verlag.

[4] J. C. M. Baeten, P. J. L. Cuijpers, B. Luttik, and P. J. A. van Tilburg. A
process-theoretic look at automata. In F. Arbab and M. Sirjani, editors, Pro-
ceedings of FSEN 2009, number 5961 in LNCS, pages 1–33, Berlin Heidelberg,
2010. Springer-Verlag.

[5] J. C. M. Baeten, P. J. L. Cuijpers, and P. J. A. van Tilburg. A context-free
process as a pushdown automaton. In F. van Breugel and M. Chechik, editors,
Proceedings CONCUR’08, number 5201 in Lecture Notes in Computer Science,
pages 98–113, 2008.

[6] J. C. M. Baeten, P. J. L. Cuijpers, and P. J. A. van Tilburg. A basic parallel
process as a parallel pushdown automaton. In D. Gorla and T. Hildebrandt,
editors, Proceedings EXPRESS’08, Electronic Notes in Theoretical Computer
Science, 2009.

26

[7] J. C. M. Baeten, B. Luttik, T. Muller, and P. J. A. van Tilburg. Expressiveness
modulo bisimilarity of regular with parallel composition (extended abstract).
In S. B. Fröschle and F. D. Valencia, editors, Proceedings of EXPRESS 2010,
volume 41 of EPTCS, pages 1–15. Open Publishing Association, 2010.

[8] Jos C. M. Baeten, Bas Luttik, and Paul van Tilburg. Computations and inter-
action. In Raja Natarajan and Adegboyega K. Ojo, editors, ICDCIT, volume
6536 of Lecture Notes in Computer Science, pages 35–54. Springer, 2011.

[9] J. A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and
nesting. The Computer Journal, 37(4):243–258, 1994.

[10] J. A. Bergstra and J. W. Klop. Process algebra: Specification and verification
in bisimulation semantics. In M. Hazewinkel, J.K. Lenstra, and L. G. L. T.
Meertens, editors, Mathematics and Computer Science II, volume 4, pages 61–
94. North-Holland, Amsterdam, 1986.

[11] M Bezem and A Ponse. Two finite specifications of a queue. Theoretical
Computer Science, 177(2):487–507, 1997.

[12] A. Blass, Y. Gurevich, D. Rosenzweig, and B. Rossman. Interactive small-
step algorithms I: Axiomatization. Logical Methods in Computer Science, 3(4),
2007.

[13] R. J. van Glabbeek. The Linear Time – Branching Time Spectrum II. In
E. Best, editor, Proceedings of CONCUR ’93, number 715 in LNCS, pages
66–81. Springer Verlag, 1993.

[14] R. J. van Glabbeek, B. Luttik, and N. Trcka. Branching bisimilarity with
explicit divergence. Fundam. Inform., 93(4):371–392, 2009.

[15] R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in
bisimulation semantics. Journal of the ACM, 43(3):555–600, 1996.

[16] D. Q. Goldin, S. A. Smolka, P. C. Attie, and E. L. Sonderegger. Turing ma-
chines, transition systems, and interaction. Inf. Comput., 194(2):101–128, 2004.

[17] D. Harel and A. Pnueli. On the development of reactive systems. In K. R.
Apt, editor, Logics and Models of Concurrent Systems, volume F-13 of NATO
ASI Series, pages 477–498, New York, 1985. Springer-Verlag.

[18] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Pearson, 2006.

[19] I. C. C. Phillips. A note on expressiveness of process algebra. In G. L. Burn,
S. Gay, and M. D. Ryan, editors, Proceedings of the First Imperial College De-
partment of Computing Workshop on Theory and Formal Methods, Workshops
in Computing, pages 260–264. Springer-Verlag, 1993.

[20] G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.
Program., 60-61:17–139, 2004.

[21] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill Book Company, 1967. Reprinted by MIT Press, 1987.

[22] M. Sipser. Introduction to the theory of computation. PWS Publishing Com-
pany, 1997.

27

[23] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(42):230–265,
1936.

[24] A. M. Turing. Systems of logic based on ordinals. Proceedings of the London
Mathematical Society, 45(2):161–228, 1939.

[25] F. W. Vaandrager. Expressiveness results for process algebras. In J. W.
de Bakker, W. P. de Roever, and G. Rozenberg, editors, REX Workshop,
volume 666 of Lecture Notes in Computer Science, pages 609–638. Springer,
1992.

[26] J. van Leeuwen and J. Wiedermann. On algorithms and interaction. In
M. Nielsen and B. Rovan, editors, MFCS, volume 1893 of Lecture Notes in
Computer Science, pages 99–113. Springer, 2000.

28

	1 Introduction
	2 Reactive Turing Machines
	3 Expressiveness of RTMs
	3.1 Simulating Boundedly Branching Computable Transition Systems
	3.2 Parallel Composition
	3.3 Universality

	4 Explicit Interaction
	4.1 TCP[]
	4.2 Correspondence

