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Introduction

Project MoCAP

◮ Models of Computation: Automata and Processes

Automata + Interaction = Concurrency

◮ Separate development

◮ Integration

◮ Study similarities and differences
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Regular Language

Right-linear grammar

Generates a regular language

X −→ aY | b

Y −→ c

Non-deterministic Finite
Automaton
Accepts a regular language

X Y
a

b c

Also: (finite) transition system
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Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Transition system

X XY
a

XY Y
a

b

Y

b

c Y Y

b

c
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Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Transition system

X XY
a

XY Y
a

b

Y

b

c Y Y

b

c

Famous theorem from automata theory

For every context-free language there exists a pushdown automaton that
accepts it.
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Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Transition system

X XY
a

XY Y
a

b

Y

b

c Y Y

b

c

Pushdown automaton

ε, ε −→ X$

ε, $ −→ ε

a, X −→ XY

b, X −→ ε

c, Y −→ ε X $

Stack
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Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b
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Transition system
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a
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b

Y
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Pushdown automaton

ε, ε −→ X$

ε, $ −→ ε

a, X −→ XY
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Processes and Recursive Specifications

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c
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Processes and Recursive Specifications

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Recursive specification over
BPA

Specifies a context-free process

X = a · (X · Y ) + b

Y = c

Restrict to:
finite and guarded specifications
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Processes and Recursive Specifications

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Recursive specification over
BPA

Specifies a context-free process

X = a · (X · Y ) + b

Y = c

Restrict to:
finite and guarded specifications

0 and 1

◮ Regular expressions use 0 (deadlock) and 1 (final state)

◮ Capture deadlocked states and (intermediate) final states

◮ The 1 is also present as λ in grammars
• Removable using language equivalence, not modulo bisimulation
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Processes and Recursive Specifications

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Recursive specification over
BPA0,1

Specifies a context-free process

X = a.(X · Y ) + b.1

Y = c.1

Restrict to:
finite and guarded specifications

0 and 1

◮ Regular expressions use 0 (deadlock) and 1 (final state)

◮ Capture deadlocked states and (intermediate) final states

◮ The 1 is also present as λ in grammars
• Removable using language equivalence, not modulo bisimulation
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Main Theorem

Process theory enables us to introduce interaction by. . .

◮ Modeling the data (a stack) as a process

◮ Making communication with the stack explicit

◮ Using bisimulation equivalences to preserve branching structure
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Main Theorem

Process theory enables us to introduce interaction by. . .

◮ Modeling the data (a stack) as a process

◮ Making communication with the stack explicit

◮ Using bisimulation equivalences to preserve branching structure

Theorem
Every context-free process is equivalent to a regular process
communicating with a stack.
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The Stack

Specifications
Infinite recursive specification (infinite data set)

Sε = 1 +
∑

d∈D

?d.Sd Sdσ = !d.Sσ +
∑

e∈D

?e.Sedσ
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Pushdown Automaton

Context-free process

X = a.(X · Y ) + b.1

Y = c.1

Translated

X̂ = a.Push(XY ) + b.Push(1)

Ŷ = c.Push(1)

Push(1) = Ctrl

Push(ξY ) = !Y.Push(ξ)

Ctrl =
∑

V ∈V

?V.V̂ + 1

S = 1 +
∑

V ∈V

?V.S · !V.S
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Pushdown Automaton

Context-free process

X = a.(X · Y ) + b.1

Y = c.1

Translated

X̂ = a.Push(XY ) + b.Push(1)

Ŷ = c.Push(1)

Push(1) = Ctrl

Push(ξY ) = !Y.Push(ξ)

Ctrl =
∑

V ∈V

?V.V̂ + 1

S = 1 +
∑

V ∈V

?V.S · !V.S

Transition system

X̂ ‖〈〉

Push(XY )‖〈〉

a

Ctrl‖〈XY 〉

?!Y, ?!X

X̂ ‖〈Y 〉

?!X

. . .

a

X̂ ‖〈Y Y 〉

. . .

Ctrl‖〈〉
b

Ctrl‖〈Y 〉
b

Ŷ ‖〈〉
?!Y

c

Ctrl‖〈Y Y 〉
b

Ŷ ‖〈Y 〉
?!Y

c

X̂ ‖〈Y Y 〉

. . .
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Pushdown Automaton

Context-free process

X = a.(X · Y ) + b.1

Y = c.1

Translated

X̂ = a.Push(XY ) + b.Push(1)

Ŷ = c.Push(1)

Push(1) = Ctrl

Push(ξY ) = !Y.Push(ξ)

Ctrl =
∑

V ∈V

?V.V̂ + 1

S = 1 +
∑

V ∈V

?V.S · !V.S

. . .modulo rooted br. bisim.

X̂ ‖〈〉

X̂ ‖〈Y 〉

a

X̂ ‖〈Y Y 〉

a

1
b

Ŷ ‖〈〉
b

c

Ŷ ‖〈Y 〉

c

b
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Context-Free Processes with 1-summands

Context-free process

X = a.(X · Y ) + b.1,

Y = c.1 + 1

Transition system

X

XY

a

XY Y

a

XY Y Y

a

1
b

Y
b

c

Y Y
b

c

Y Y Y
b

c
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Context-Free Processes with 1-summands

Context-free process

X = a.(X · Y ) + b.1,

Y = c.1 + 1

Translation adaptation

S = 1 +
∑

V ∈V

?V.S · !V.S

Transition system

X

XY

a

XY Y

a

XY Y Y

a

1
b

Y
b

c
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b
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Context-Free Processes with 1-summands

Context-free process

X = a.(X · Y ) + b.1,

Y = c.1 + 1

Translation adaptation

S = 1 +
∑

V ∈V−V+1

?V.S · !V.S

+
∑

V ∈V+1

?V.S · (1 + !V.S)

for V+1 ⊆ V

Transition system

X

XY

a

XY Y

a

XY Y Y

a

1
b

Y
b

c

Y Y
b

c

Y Y Y
b

c

c

c

c



10

/department of mathematics and computer science

Context-Free Process Results

Unbounded branching

◮ Solution modulo contrasimulation

◮ Using partially forgetful stack, the prototypical context-free process

Without 1-summands

◮ Solution modulo rooted branching bisimulation

◮ Using normal stack, the prototypical context-free process (for BPA)
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Context-Free Process Results

Unbounded branching

◮ Solution modulo contrasimulation

◮ Using partially forgetful stack, the prototypical context-free process

Without 1-summands

◮ Solution modulo rooted branching bisimulation

◮ Using normal stack, the prototypical context-free process (for BPA)

Bounded branching

◮ Solution modulo rooted branching bisimulation!

◮ Using the partially forgetful stack
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Concluding Remarks

Proved Theorem
For every context-free process P there exists a regular process Q such
that P = τ∗(∂∗(Q ‖ S)).

◮ Formalized interaction in the pushdown automaton

◮ Made communication with the stack explicit

◮ Introduced 0 and 1, dealt with complications

◮ The (partially forgetful) stack is the prototypical context-free

process
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Concluding Remarks

Proved Theorem
For every context-free process P there exists a regular process Q such
that P = τ∗(∂∗(Q ‖ S)).

◮ Formalized interaction in the pushdown automaton

◮ Made communication with the stack explicit

◮ Introduced 0 and 1, dealt with complications

◮ The (partially forgetful) stack is the prototypical context-free

process

Future work

◮ Reverse case, maybe with 1?

◮ Sequential composition replaced by parallel composition

[EXPRESS’08]

◮ Queues?
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Questions?

Thank you!

Questions?


