
/department of mathematics and computer science

A Context-Free Process as a Pushdown Automaton

Paul van Tilburg

(joint work with Jos Baeten and Pieter Cuijpers)

Department of Mathematics and Computer Science
Eindhoven University of Technology

CONCUR ’08
Toronto, Canada / August 19, 2008



2

/department of mathematics and computer science

Introduction

Project MoCAP

◮ Models of Computation: Automata and Processes

Automata + Interaction = Concurrency



2

/department of mathematics and computer science

Introduction

Project MoCAP

◮ Models of Computation: Automata and Processes

Automata + Interaction = Concurrency

◮ Separate development

◮ Integration

◮ Study similarities and differences



3

/department of mathematics and computer science

Regular Language

Right-linear grammar

Generates a regular language

X −→ aY | b

Y −→ c

Non-deterministic Finite
Automaton
Accepts a regular language

X Y
a

b c

Also: (finite) transition system



4

/department of mathematics and computer science

Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Transition system

X XY
a

XY Y
a

b

Y

b

c Y Y

b

c



4

/department of mathematics and computer science

Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Transition system

X XY
a

XY Y
a

b

Y

b

c Y Y

b

c

Famous theorem from automata theory

For every context-free language there exists a pushdown automaton that
accepts it.



4

/department of mathematics and computer science

Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Transition system

X XY
a

XY Y
a

b

Y

b

c Y Y

b

c

Pushdown automaton

ε, ε −→ X$

ε, $ −→ ε

a, X −→ XY

b, X −→ ε

c, Y −→ ε X $

Stack



4

/department of mathematics and computer science

Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Transition system

X XY
a

XY Y
a

b

Y

b

c Y Y

b

c

Pushdown automaton

ε, ε −→ X$

ε, $ −→ ε

a, X −→ XY

b, X −→ ε

c, Y −→ ε X Y $

Stack



4

/department of mathematics and computer science

Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Transition system

X XY
a

XY Y
a

b

Y

b

c Y Y

b

c

Pushdown automaton

ε, ε −→ X$

ε, $ −→ ε

a, X −→ XY

b, X −→ ε

c, Y −→ ε X Y Y $

Stack



4

/department of mathematics and computer science

Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Transition system

X XY
a

XY Y
a

b

Y

b

c Y Y

b

c

Pushdown automaton

ε, ε −→ X$

ε, $ −→ ε

a, X −→ XY

b, X −→ ε

c, Y −→ ε Y Y $

Stack



4

/department of mathematics and computer science

Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Transition system

X XY
a

XY Y
a

b

Y

b

c Y Y

b

c

Pushdown automaton

ε, ε −→ X$

ε, $ −→ ε

a, X −→ XY

b, X −→ ε

c, Y −→ ε Y $

Stack



4

/department of mathematics and computer science

Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Transition system

X XY
a

XY Y
a

b

Y

b

c Y Y

b

c

Pushdown automaton

ε, ε −→ X$

ε, $ −→ ε

a, X −→ XY

b, X −→ ε

c, Y −→ ε $

Stack



5

/department of mathematics and computer science

Processes and Recursive Specifications

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c



5

/department of mathematics and computer science

Processes and Recursive Specifications

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Recursive specification over
BPA

Specifies a context-free process

X = a · (X · Y ) + b

Y = c

Restrict to:
finite and guarded specifications



5

/department of mathematics and computer science

Processes and Recursive Specifications

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Recursive specification over
BPA

Specifies a context-free process

X = a · (X · Y ) + b

Y = c

Restrict to:
finite and guarded specifications

0 and 1

◮ Regular expressions use 0 (deadlock) and 1 (final state)

◮ Capture deadlocked states and (intermediate) final states

◮ The 1 is also present as λ in grammars
• Removable using language equivalence, not modulo bisimulation



5

/department of mathematics and computer science

Processes and Recursive Specifications

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Recursive specification over
BPA0,1

Specifies a context-free process

X = a.(X · Y ) + b.1

Y = c.1

Restrict to:
finite and guarded specifications

0 and 1

◮ Regular expressions use 0 (deadlock) and 1 (final state)

◮ Capture deadlocked states and (intermediate) final states

◮ The 1 is also present as λ in grammars
• Removable using language equivalence, not modulo bisimulation



6

/department of mathematics and computer science

Main Theorem

Process theory enables us to introduce interaction by. . .

◮ Modeling the data (a stack) as a process

◮ Making communication with the stack explicit

◮ Using bisimulation equivalences to preserve branching structure



6

/department of mathematics and computer science

Main Theorem

Process theory enables us to introduce interaction by. . .

◮ Modeling the data (a stack) as a process

◮ Making communication with the stack explicit

◮ Using bisimulation equivalences to preserve branching structure

Theorem
Every context-free process is equivalent to a regular process
communicating with a stack.



7

/department of mathematics and computer science

The Stack

Specifications
Infinite recursive specification (infinite data set)

Sε = 1 +
∑

d∈D

?d.Sd Sdσ = !d.Sσ +
∑

e∈D

?e.Sedσ



7

/department of mathematics and computer science

The Stack

Specifications
Infinite recursive specification (infinite data set)

Sε = 1 +
∑

d∈D

?d.Sd Sdσ = !d.Sσ +
∑

e∈D

?e.Sedσ

Finite recursive specification over BPA

S = T · S T =
∑

d∈D

?d.Td Td = !d + T · Td



7

/department of mathematics and computer science

The Stack

Specifications
Infinite recursive specification (infinite data set)

Sε = 1 +
∑

d∈D

?d.Sd Sdσ = !d.Sσ +
∑

e∈D

?e.Sedσ

Finite recursive specification over BPA

S = T · S T =
∑

d∈D

?d.Td Td = !d + T · Td

Even smaller specification (over BPA0,1)

S = 1 +
∑

d∈D

?d.(S · !d.S)



7

/department of mathematics and computer science

The Stack

Specifications
Infinite recursive specification (infinite data set)

Sε = 1 +
∑

d∈D

?d.Sd Sdσ = !d.Sσ +
∑

e∈D

?e.Sedσ

Finite recursive specification over BPA

S = T · S T =
∑

d∈D

?d.Td Td = !d + T · Td

Even smaller specification (over BPA0,1)

S = 1 +
∑

d∈D

?d.(S · !d.S)



8

/department of mathematics and computer science

Pushdown Automaton

Context-free process

X = a.(X · Y ) + b.1

Y = c.1

Translated

X̂ = a.Push(XY ) + b.Push(1)

Ŷ = c.Push(1)

Push(1) = Ctrl

Push(ξY ) = !Y.Push(ξ)

Ctrl =
∑

V ∈V

?V.V̂ + 1

S = 1 +
∑

V ∈V

?V.S · !V.S



8

/department of mathematics and computer science

Pushdown Automaton

Context-free process

X = a.(X · Y ) + b.1

Y = c.1

Translated

X̂ = a.Push(XY ) + b.Push(1)

Ŷ = c.Push(1)

Push(1) = Ctrl

Push(ξY ) = !Y.Push(ξ)

Ctrl =
∑

V ∈V

?V.V̂ + 1

S = 1 +
∑

V ∈V

?V.S · !V.S

Transition system

X̂ ‖〈〉

Push(XY )‖〈〉

a

Ctrl‖〈XY 〉

?!Y, ?!X

X̂ ‖〈Y 〉

?!X

. . .

a

X̂ ‖〈Y Y 〉

. . .

Ctrl‖〈〉
b

Ctrl‖〈Y 〉
b

Ŷ ‖〈〉
?!Y

c

Ctrl‖〈Y Y 〉
b

Ŷ ‖〈Y 〉
?!Y

c

X̂ ‖〈Y Y 〉

. . .



8

/department of mathematics and computer science

Pushdown Automaton

Context-free process

X = a.(X · Y ) + b.1

Y = c.1

Translated

X̂ = a.Push(XY ) + b.Push(1)

Ŷ = c.Push(1)

Push(1) = Ctrl

Push(ξY ) = !Y.Push(ξ)

Ctrl =
∑

V ∈V

?V.V̂ + 1

S = 1 +
∑

V ∈V

?V.S · !V.S

. . .modulo rooted br. bisim.

X̂ ‖〈〉

X̂ ‖〈Y 〉

a

X̂ ‖〈Y Y 〉

a

1
b

Ŷ ‖〈〉
b

c

Ŷ ‖〈Y 〉

c

b



9

/department of mathematics and computer science

Context-Free Processes with 1-summands

Context-free process

X = a.(X · Y ) + b.1,

Y = c.1 + 1

Transition system

X

XY

a

XY Y

a

XY Y Y

a

1
b

Y
b

c

Y Y
b

c

Y Y Y
b

c



9

/department of mathematics and computer science

Context-Free Processes with 1-summands

Context-free process

X = a.(X · Y ) + b.1,

Y = c.1 + 1

Transition system

X

XY

a

XY Y

a

XY Y Y

a

1
b

Y
b

c

Y Y
b

c

Y Y Y
b

c



9

/department of mathematics and computer science

Context-Free Processes with 1-summands

Context-free process

X = a.(X · Y ) + b.1,

Y = c.1 + 1

Transition system

X

XY

a

XY Y

a

XY Y Y

a

1
b

Y
b

c

Y Y
b

c

Y Y Y
b

c

c



9

/department of mathematics and computer science

Context-Free Processes with 1-summands

Context-free process

X = a.(X · Y ) + b.1,

Y = c.1 + 1

Transition system

X

XY

a

XY Y

a

XY Y Y

a

1
b

Y
b

c

Y Y
b

c

Y Y Y
b

c

c

c

c



9

/department of mathematics and computer science

Context-Free Processes with 1-summands

Context-free process

X = a.(X · Y ) + b.1,

Y = c.1 + 1

Translation adaptation

S = 1 +
∑

V ∈V

?V.S · !V.S

Transition system

X

XY

a

XY Y

a

XY Y Y

a

1
b

Y
b

c

Y Y
b

c

Y Y Y
b

c

c

c

c



9

/department of mathematics and computer science

Context-Free Processes with 1-summands

Context-free process

X = a.(X · Y ) + b.1,

Y = c.1 + 1

Translation adaptation

S = 1 +
∑

V ∈V−V+1

?V.S · !V.S

+
∑

V ∈V+1

?V.S · (1 + !V.S)

for V+1 ⊆ V

Transition system

X

XY

a

XY Y

a

XY Y Y

a

1
b

Y
b

c

Y Y
b

c

Y Y Y
b

c

c

c

c



10

/department of mathematics and computer science

Context-Free Process Results

Unbounded branching

◮ Solution modulo contrasimulation

◮ Using partially forgetful stack, the prototypical context-free process

Without 1-summands

◮ Solution modulo rooted branching bisimulation

◮ Using normal stack, the prototypical context-free process (for BPA)



10

/department of mathematics and computer science

Context-Free Process Results

Unbounded branching

◮ Solution modulo contrasimulation

◮ Using partially forgetful stack, the prototypical context-free process

Without 1-summands

◮ Solution modulo rooted branching bisimulation

◮ Using normal stack, the prototypical context-free process (for BPA)

Bounded branching

◮ Solution modulo rooted branching bisimulation!

◮ Using the partially forgetful stack



11

/department of mathematics and computer science

Concluding Remarks

Proved Theorem
For every context-free process P there exists a regular process Q such
that P = τ∗(∂∗(Q ‖ S)).

◮ Formalized interaction in the pushdown automaton

◮ Made communication with the stack explicit

◮ Introduced 0 and 1, dealt with complications

◮ The (partially forgetful) stack is the prototypical context-free

process



11

/department of mathematics and computer science

Concluding Remarks

Proved Theorem
For every context-free process P there exists a regular process Q such
that P = τ∗(∂∗(Q ‖ S)).

◮ Formalized interaction in the pushdown automaton

◮ Made communication with the stack explicit

◮ Introduced 0 and 1, dealt with complications

◮ The (partially forgetful) stack is the prototypical context-free

process

Future work

◮ Reverse case, maybe with 1?

◮ Sequential composition replaced by parallel composition

[EXPRESS’08]

◮ Queues?



12

/department of mathematics and computer science

Questions?

Thank you!

Questions?


