A Context-Free Process as a Pushdown Automaton

Paul van Tilburg

(joint work with Jos Baeten and Pieter Cuijpers)

Department of Mathematics and Computer Science
Eindhoven University of Technology

CONCUR’08
Toronto, Canada / August 19, 2008

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Introduction

Project MoCAP

» Models of Computation: Automata and Processes

Automata + Interaction = Concurrency

Technische Universiteit
/ department of mathematics and computer science e Eindhoven
University of Technology

Introduction

Project MoCAP

» Models of Computation: Automata and Processes
Automata + Interaction = Concurrency

» Separate development
» Integration
» Study similarities and differences

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Regular Language

Right-linear grammar Non-deterministic Finite
Automaton

Generates a regular language
Accepts a regular language

X —aY | b

Y —¢

Also: (finite) transition system

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Context-free grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Context-free grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Famous theorem from automata theory
For every context-free language there exists a pushdown automaton that
accepts it.

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Context-free grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Pushdown automaton

g,e — X$ a,X — XY Stack
byX — ¢
c,Y — ¢ Eﬂ
e,$—e

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Context-free grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Pushdown automaton

g,e — X$ a,X — XY Stack
byX — ¢
c,Y — ¢ ﬂ
e,$—e

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Context-free grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Pushdown automaton

g,e — X$ a,X — XY Stack
byX — ¢
c,Y — ¢ ﬂ
e,$—e

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Context-free grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Pushdown automaton

g,e — X$ a,X — XY Stack
byX — ¢
c,Y — ¢ ﬂ
e,$—e

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Context-free grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Pushdown automaton

g,e — X$ a,X — XY Stack
byX — ¢
c,Y — ¢ Eﬂ
e,$—e

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Context-free grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Pushdown automaton

g,e — X$ a,X — XY Stack
byX — ¢
c,Y — ¢
e,$—e

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Processes and Recursive Specifications

Context-free grammar
Generates a context-free language

X —aXY | b

Y —e¢

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Processes and Recursive Specifications

Context-free grammar Recursive specification over
Generates a context-free language BPA

X — aXY | b Specifies a context-free process

Y —e¢ X=a-(X-Y)+0
Y =c¢
Restrict to:

finite and guarded specifications

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Processes and Recursive Specifications

Context-free grammar Recursive specification over
Generates a context-free language BPA

X — aXY | b Specifies a context-free process

Y =c¢
Restrict to:

finite and guarded specifications

Oand1

» Regular expressions use 0 (deadlock) and 1 (final state)
» Capture deadlocked states and (intermediate) final states

» The 1 is also present as A in grammars
» Removable using language equivalence, not modulo bisimulation

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Processes and Recursive Specifications

Context-free grammar Recursive specification over
Generates a context-free language BPA ;

X — aXY | b Specifies a context-free process

Y — ¢ X=a(X-Y)+b1
Y=cl1
Restrict to:

finite and guarded specifications

Oand1

» Regular expressions use 0 (deadlock) and 1 (final state)
» Capture deadlocked states and (intermediate) final states

» The 1 is also present as A in grammars
» Removable using language equivalence, not modulo bisimulation

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Main Theorem

Process theory enables us to introduce interaction by...

» Modeling the data (a stack) as a process
» Making communication with the stack explicit
» Using bisimulation equivalences to preserve branching structure

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Main Theorem

Process theory enables us to introduce interaction by...

» Modeling the data (a stack) as a process
» Making communication with the stack explicit
» Using bisimulation equivalences to preserve branching structure

Theorem

Every context-free process is equivalent to a regular process
communicating with a stack.

Technische Universiteit
/ department of mathematics and computer science Eindhoven

University of Technology

Specifications
Infinite recursive specification (infinite data set)

Se=1+) 7d.S Sio =1d.Sy + > _ ?€.Sedo
deD eeD

Technische Universiteit
/ department of mathematics and computer science e Eindhoven
University of Technology

Specifications
Infinite recursive specification (infinite data set)

Se=1+) ?d.S Sio =1d.S5 + Y _ 7€.8cao
deD eeD

Finite recursive specification over BPA

S=T-8 T:Z?d.Td Ty=1d+T Ty
deD

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Specifications
Infinite recursive specification (infinite data set)

Se=1+) ?d.S Sio ='d-So + Y ?e.Scio

deD ecD

Finite recursive specification over BPA

S=T-8 T:Z?d.Td Ty=d+T- Ty
deD

Even smaller specification (over BPAg 1)

S=1+) ?d(S-1d.5)

deD

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Specifications
Infinite recursive specification (infinite data set)

Se=1+) ?d.S Sio ='d-So + Y ?e.Scio

deD ecD

Finite recursive specification over BPA

S=T-8 T:Z?d.Td Ty=d+T- Ty
deD

Even smaller specification (over BPAg 1)

S=1+) ?d(S-1d.5)

deD

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Pushdown Automaton

Context-free process

X=a(XY)+b1
Y =cl

Translated

X = a.Push(XY) + b.Push(1)

Y = c.Push(1)

Push(1) = Ctrl
Push(£Y) = Y. Push(¢)

Ctrl= Y V.V +1
Vey

S=1+4) ?V.S§-1V.S
vev

Technische Universiteit
/ department of mathematics and computer science Eindhoven

University of Technology

Pushdown Automaton

Context-free process Transition system

X=a(XY)+b1
Y =cl

Translated
X = a.Push(XY) + b.Push(1)

Y = c.Push(1)
Push(1) = Ctrl
Push(¢Y') =Y. Push(¢)
Ctrl= Y V.V +1
vey
S=1+4) ?V.S§-1V.S

vev

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Pushdown Automaton

Context-free process

X=a(XY)+b1
Y=cl
Translated
X = a.Push(XY) + b.Push(1)

Y = c.Push(1)

Push(1) = Ctrl
Push(£Y) = !Y.Push(¢)
Ctrl= Y ?7V.V+1
Vvey
S=1+> ?W.8-1V.S
Vvey

/ department of mathematics and computer science

...modulo rooted br. bisim.

X10) b
X r)—r
X (Y) —ro

Technische Universiteit
Eindhoven
University of Technology

TU/

Context-Free Processes with 1-summands

Context-free process Transition system

X=a(X Y)+0b1,
Y=cl+1

I
Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Processes with 1-summands

Context-free process Transition system

X=a(X Y)+0b1,
Y=cl+1

I
Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Processes with 1-summands

Context-free process Transition system

X=a(X Y)+0b1,
Y=cl+1

I
Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Processes with 1-summands

Context-free process Transition system

X=a(X Y)+0b1,
Y=cl+1

I
Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Processes with 1-summands

Context-free process Transition system

X=a(X Y)+0b1,
Y=cl+1

Translation adaptation

S=1+)» ?V.8-V.S
Vey

I
Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Processes with 1-summands

Context-free process

X=a(X Y)+0b1,
Y=cl+1

Translation adaptation

S=1+ > VS-S
Vey-y+i

+) .S (1+1V.S)
Vey+i

foryt™* CVy

/ department of mathematics and computer science

Transition system

|
Technische Universiteit
Eindhoven
University of Technology

Context-Free Process Results

Unbounded branching

» Solution modulo contrasimulation
» Using partially forgetful stack, the prototypical context-free process

Without 1-summands

» Solution modulo rooted branching bisimulation
» Using normal stack, the prototypical context-free process (for BPA)

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Process Results

Unbounded branching

» Solution modulo contrasimulation
» Using partially forgetful stack, the prototypical context-free process

Without 1-summands

» Solution modulo rooted branching bisimulation
» Using normal stack, the prototypical context-free process (for BPA)

Bounded branching

» Solution modulo rooted branching bisimulation!
» Using the partially forgetful stack

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Concluding Remarks

Proved Theorem
For every context-free process P there exists a regular process () such
that P = 7.(0.(Q || 9)).

» Formalized interaction in the pushdown automaton

» Made communication with the stack explicit

» Introduced 0 and 1, dealt with complications

» The (partially forgetful) stack is the prototypical context-free
process

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Concluding Remarks

Proved Theorem
For every context-free process P there exists a regular process () such
that P = 7.(0.(Q || 9)).
» Formalized interaction in the pushdown automaton
» Made communication with the stack explicit
» Introduced 0 and 1, dealt with complications
» The (partially forgetful) stack is the prototypical context-free
process
Future work

» Reverse case, maybe with 1?7

» Sequential composition replaced by parallel composition
[EXPRESS’08]

» Queues?

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Thank you!

Questions?

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

