
/department of mathematics and computer science

A Basic Parallel Process as a Parallel

Pushdown Automaton

Paul van Tilburg

(joint work with Jos Baeten and Pieter Cuijpers)

Department of Mathematics and Computer Science
Eindhoven University of Technology

EXPRESS ’08

Toronto, Canada / August 23, 2008



2

/department of mathematics and computer science

Introduction

Project MoCAP

◮ Models of Computation: Automata and Processes

Automata + Interaction = Concurrency



2

/department of mathematics and computer science

Introduction

Project MoCAP

◮ Models of Computation: Automata and Processes

Automata + Interaction = Concurrency

◮ Context-free process as a pushdown automaton [CONCUR’08]

◮ Study similarities and differences

◮ Different approach



3

/department of mathematics and computer science

Regular Language

Right-linear grammar

Generates a regular language

X −→ aY | b

Y −→ c

Non-deterministic finite
automaton
Accepts a regular language

X Y
a

b c

Also: (finite) transition system



4

/department of mathematics and computer science

Context-Free Language

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Transition system

X XY
a

XY Y
a

b

Y

b

c Y Y

b

c

Famous theorem from automata theory

For every context-free language there exists a pushdown automaton that
accepts it.



5

/department of mathematics and computer science

Processes and Recursive Specifications

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Recursive specification over
BPA0,1

Specifies a context-free process

X = a.(X · Y ) + b.1

Y = c.1

Restrict to:

finite and guarded specifications



5

/department of mathematics and computer science

Processes and Recursive Specifications

Context-free grammar
Generates a context-free language

X −→ aXY | b

Y −→ c

Recursive specification over
BPA0,1

Specifies a context-free process

X = a.(X · Y ) + b.1

Y = c.1

Restrict to:

finite and guarded specifications

0 and 1

◮ Used to express deadlocked state (0) and final state (1)



6

/department of mathematics and computer science

Theorem for Context-Free Processes

Process theory enables us to introduce interaction by. . .

◮ Modeling the data (a stack) as a process

◮ Making communication with the stack explicit

◮ Using bisimulation equivalences to preserve branching structure

Theorem
Every context-free process is equivalent to a regular process
communicating with a stack. [CONCUR’08]



7

/department of mathematics and computer science

Basic Parallel Processes

Recursive specification over
BPP0,1

Specifies a basic parallel process

X = a.(X ‖ Y ) + b.1

Y = c.1

Transition system

X XY XY Y

1

b

Y

b

c Y Y

b

c

a a

c c



7

/department of mathematics and computer science

Basic Parallel Processes

Recursive specification over
BPP0,1

Specifies a basic parallel process

X = a.(X ‖ Y ) + b.1

Y = c.1

Transition system

X XY XY Y

1

b

Y

b

c Y Y

b

c

a a

c c

Theorem
Every basic parallel process is equivalent to a regular process
communicating with a bag.



8

/department of mathematics and computer science

The Bag

Specification over BPA0,1

B = 1 +
∑

d∈D

?id.(B ‖ !od.1)

Interaction
Use γ(!cd, ?cd) = ?!cd for all d ∈ D and channel c = i, o

!id.P ‖γ B
?!id−→ P ‖γ (B ‖ !od.1)

?od.P ‖γ (B ‖ !od.1)
?!od
−→ P ‖γ B



9

/department of mathematics and computer science

Parallel Pushdown Automaton

Basic parallel process

X = a.(X ‖ Y ) + b.1

Y = c.1

Translated

X̂ = a.Push(XY ) + b.Push(∅)

Ŷ = c.Push(∅)

Push(∅) = Ctrl

Push(Xξ) = !iX.Push(ξ)

Ctrl =
∑

V ∈V

?oV.V̂

in parallel with a bag:

B = 1 +
∑

V ∈V

?iV.(B ‖ !oV.1)



9

/department of mathematics and computer science

Parallel Pushdown Automaton

Basic parallel process

X = a.(X ‖ Y ) + b.1

Y = c.1

Ctrl ‖
γ
〈XY

n〉 “X̂ ‖
γ
〈Y n〉”

“Ŷ ‖
γ
〈XY

n−1〉”

a

b

c

?!oX

?!iX

?!oY?!iY

Translated

X̂ = a.Push(XY ) + b.Push(∅)

Ŷ = c.Push(∅)

Push(∅) = Ctrl

Push(Xξ) = !iX.Push(ξ)

Ctrl =
∑

V ∈V

?oV.(V̂ + !iV.Ctrl)

in parallel with a bag:

B = 1 +
∑

V ∈V

?iV.(B ‖ !oV.1)



9

/department of mathematics and computer science

Parallel Pushdown Automaton

Basic parallel process

X = a.(X ‖ Y ) + b.1

Y = c.1 + 1

Ctrl ‖
γ
〈XY

n〉 “X̂ ‖
γ
〈Y n〉”

“Ŷ ‖
γ
〈XY

n−1〉”

a

b

c

?!oX

?!iX

?!oY?!iY

Translated

X̂ = a.Push(XY ) + b.Push(∅)

Ŷ = c.Push(∅) + 1

Push(∅) = Ctrl

Push(Xξ) = !iX.Push(ξ)

Ctrl =
∑

V ∈V

?oV.(V̂ + !iV.Ctrl)

in parallel with a partially forgetful bag:

B = 1 +
∑

V ∈V−V+1

?iV.(B ‖ !oV.1)

+
∑

V ∈V+1

?iV.(B ‖ (!oV.1 + 1))



10

/department of mathematics and computer science

Results & Concluding Remarks

Proved Theorem
For every basic parallel process P there exists a regular process Q such
that P = τ∗(∂∗(Q ‖γ B)).

◮ Solution modulo rooted branching bisimulation

◮ Made communication with the bag explicit

◮ The (partially forgetful) bag is the prototypical basic parallel process



10

/department of mathematics and computer science

Results & Concluding Remarks

Proved Theorem
For every basic parallel process P there exists a regular process Q such
that P = τ∗(∂∗(Q ‖γ B)).

◮ Solution modulo rooted branching bisimulation

◮ Made communication with the bag explicit

◮ The (partially forgetful) bag is the prototypical basic parallel process

Corollary

Every basic parallel process has bounded branching.



10

/department of mathematics and computer science

Results & Concluding Remarks

Proved Theorem
For every basic parallel process P there exists a regular process Q such
that P = τ∗(∂∗(Q ‖γ B)).

◮ Solution modulo rooted branching bisimulation

◮ Made communication with the bag explicit

◮ The (partially forgetful) bag is the prototypical basic parallel process

Corollary

Every basic parallel process has bounded branching.

Future work

◮ Reverse case, maybe with 1?

◮ Queues?



11

/department of mathematics and computer science

Questions?

Thank you!

Questions?


