
Where innovation starts

Models of Computation:
Automata and Processes
An Overview

Paul van Tilburg

(joint work with Jos Baeten, Bas Luttik and Pieter Cuijpers)

July 14, 2009



2/21

/department of mathematics and computer science

Introduction

Automata & Formal Language theory

◮ Back in the days: different model and real-world computers

◮ Fixed input string

◮ Input separated from output

◮ Batch process



2/21

/department of mathematics and computer science

Introduction

Automata & Formal Language theory

◮ Back in the days: different model and real-world computers

◮ Fixed input string

◮ Input separated from output

◮ Batch process

◮ Nowadays: one click as input

◮ Computers are reactive systems

◮ Interaction much more important



2/21

/department of mathematics and computer science

Introduction

Automata & Formal Language theory

◮ Back in the days: different model and real-world computers

◮ Fixed input string

◮ Input separated from output

◮ Batch process

◮ Nowadays: one click as input

◮ Computers are reactive systems

◮ Interaction much more important

◮ Note: Provides very useful models of computation



3/21

/department of mathematics and computer science

Introduction (2)

Process theory

◮ Split off, separate development

◮ Focuses on interaction

◮ Deals with concurrent setting

Integration

◮ Attempt reveals differences and similarities

◮ Use analogies to make the integration explicit

◮ Increase understanding of both theories



3/21

/department of mathematics and computer science

Introduction (2)

Process theory

◮ Split off, separate development

◮ Focuses on interaction

◮ Deals with concurrent setting

Integration

◮ Attempt reveals differences and similarities

◮ Use analogies to make the integration explicit

◮ Increase understanding of both theories

◮ Practical side: merge in undergraduate curriculum course



4/21

/department of mathematics and computer science

Turing machine

Finite ControlInput Output

Memory

◮ Control is discrete: states and transitions: automaton

◮ Input, output: string or word over alphabet

◮ Alphabet: action, instruction, information



5/21

/department of mathematics and computer science

Finite Automaton

Finite ControlInput yes/no

◮ Corresponds to regular language

◮ No memory!

◮ Two equivalences: language equivalence and isomorphism



6/21

/department of mathematics and computer science

Grammars and Recursive Specifications

S

T U V

W R

a

a

b

b

b
a

a

b



6/21

/department of mathematics and computer science

Grammars and Recursive Specifications

S

T U V

W R

a

a

b

b

b
a

a

b

S = aT + aW

T = aU + bW

U = bV + bR

V = 0

W = aR

R = bW + 1

◮ From Finite Automaton to recursive specification



7/21

/department of mathematics and computer science

From Recursive Specification to Automaton

1 ↓ ax
a

−→ x

x
a

−→ x′

x + y
a

−→ x′

y
a

−→ y′

x + y
a

−→ y′

x ↓

x + y ↓

y ↓

x + y ↓

t
a

−→ x P = t

P
a

−→ x

t ↓ P = t

P ↓

◮ Structural Operational Semantics [Plotkin, JLAP, 2004]



8/21

/department of mathematics and computer science

Similarities with Process Algebra

◮ Finite Automaton = finite labelled transition system

◮ Grammar = recursive specification over 0,1,+, ·, a

◮ Regular expression = closed term over 0,1,+, ·, a, ∗



8/21

/department of mathematics and computer science

Similarities with Process Algebra

◮ Finite Automaton = finite labelled transition system

◮ Grammar = recursive specification over 0,1,+, ·, a

◮ Regular expression = closed term over 0,1,+, ·, a, ∗

Basic Process Algebra

◮ 0 inaction, unsuccessful termination, deadlock

◮ 1 empty process, skip, successful termination

◮ a_ action prefix

◮ _ + _ alternative composition, choice

◮ _ · _ sequential composition

[Baeten, Basten, Reniers, Process Algebra, Cambridge UP, 2009]



9/21

/department of mathematics and computer science

Bisimulation

◮ In process theory a difference equivalent is used

◮ Expose interaction and preserve choices

Definition
We call the largest symmetric relation R such that

◮ if p
a

−→ p′ then there exists q′ such that q
a

−→ q′ and p′ R q′

◮ if q
a

−→ q′ then there exists p′ such that p
a

−→ p′ and p′ R q′

◮ if p↓ implies q↓ and vice versa

a bisimulation relation

◮ If (p, q) ∈R, then p and q are bisimilar (notation: p ↔ q)



10/21

/department of mathematics and computer science

Regular Process

Definition
A regular language is a language equivalence class of a finite
(non-deterministic) automaton



10/21

/department of mathematics and computer science

Regular Process

Definition
A regular language is a language equivalence class of a finite
(non-deterministic) automaton

Definition
A regular process is a bisimulation equivalence class of a finite,

non-deterministic automaton



10/21

/department of mathematics and computer science

Regular Process

Definition
A regular language is a language equivalence class of a finite
(non-deterministic) automaton

Definition
A regular process is a bisimulation equivalence class of a finite,

non-deterministic automaton

◮ A regular process is given by a recursive specification over the

signature 0,1, a,+



10/21

/department of mathematics and computer science

Regular Process

Definition
A regular language is a language equivalence class of a finite
(non-deterministic) automaton

Definition
A regular process is a bisimulation equivalence class of a finite,

non-deterministic automaton

◮ A regular process is given by a recursive specification over the

signature 0,1, a,+

◮ Processes given by deterministic automata, and by regular

expressions, form a subclass

[Baeten, Corradini, Grabmayer, JACM 2007]



11/21

/department of mathematics and computer science

Pushdown Automaton

a, ∅ → 1∅

b, 1 → ε

a, 1 → 11

b, 1 → ε

a a a

b b b

bb

a

b



12/21

/department of mathematics and computer science

The Stack

i?0

o!0 i?1

o!1

i?0

o!0 i?1

o!1 i?0

o!0 i?1

o!1

S = 1 +
∑

d∈D

i?d.S · o!d.S



13/21

/department of mathematics and computer science

Pushdown Process

Theorem
A process p is a pushdown process iff there is a regular process q with

p ↔b τi,o(∂i,o(q ‖ S))

◮ Proof in [Baeten, Cuijpers, Luttik, van Tilburg, FSEN, 2009]



13/21

/department of mathematics and computer science

Pushdown Process

Theorem
A process p is a pushdown process iff there is a regular process q with

p ↔b τi,o(∂i,o(q ‖ S))

◮ Proof in [Baeten, Cuijpers, Luttik, van Tilburg, FSEN, 2009]

Recursive specification

Every recursive specification over BPA0,1 with bounded branching

denotes a pushdown process

◮ Example: X = 1 + aX · b1

X
a

−→ X · b1
a

−→ X · b1 · b1 . . .



14/21

/department of mathematics and computer science

Problem with 1-summands

a a a

b b b b

ccc

c c

c

a

c

X = aX · Y + b1

Y = 1 + c1



14/21

/department of mathematics and computer science

Problem with 1-summands

a a a

b b b b

ccc

c c

c

a

c

X = aX · Y + b1

Y = 1 + c1

◮ Recursive specifications over BPA0,1 can lead to unboundedness

◮ Cannot be done by our pushdown process due to stack and finite

control

◮ Can be solved using a forgetful stack [Baeten, Cuijpers, van Tilburg,

CONCUR, 2008]



15/21

/department of mathematics and computer science

What About Context-Free Processes?

◮ Context-free languages correspond to language accepted by PDAs

◮ Not the case with bisimulation! [Moller, 1996]

◮ Fix: do not allow for pop choice (to ensure existence specification)



15/21

/department of mathematics and computer science

What About Context-Free Processes?

◮ Context-free languages correspond to language accepted by PDAs

◮ Not the case with bisimulation! [Moller, 1996]

◮ Fix: do not allow for pop choice (to ensure existence specification)

◮ Recursive specification over BPA0,1 can lead to unbounded

branching

◮ Fix: transparency-restricted Greibach normal form



15/21

/department of mathematics and computer science

What About Context-Free Processes?

◮ Context-free languages correspond to language accepted by PDAs

◮ Not the case with bisimulation! [Moller, 1996]

◮ Fix: do not allow for pop choice (to ensure existence specification)

◮ Recursive specification over BPA0,1 can lead to unbounded

branching

◮ Fix: transparency-restricted Greibach normal form

Theorem
A process is a pop choice-free pushdown process iff it is definable by a
transparency-restricted recursive specification [FSEN, 2009]



15/21

/department of mathematics and computer science

What About Context-Free Processes?

◮ Context-free languages correspond to language accepted by PDAs

◮ Not the case with bisimulation! [Moller, 1996]

◮ Fix: do not allow for pop choice (to ensure existence specification)

◮ Recursive specification over BPA0,1 can lead to unbounded

branching

◮ Fix: transparency-restricted Greibach normal form

Theorem
A process is a pop choice-free pushdown process iff it is definable by a
transparency-restricted recursive specification [FSEN, 2009]

◮ Not every pushdown process is context-free

◮ Decidability of bisimulation shown for this class!



16/21

/department of mathematics and computer science

Basic Parallel Process

Definition
A parallel pushdown automaton gives a parallel pushdown process



16/21

/department of mathematics and computer science

Basic Parallel Process

Definition
A parallel pushdown automaton gives a parallel pushdown process

Theorem
A process p is parallel pushdown iff there is a regular process q with

p ↔b τi,o(∂i,o(q ‖ B))

where B is the bag: B = 1 +
∑
d∈D

i?d.(B ‖ o!d.1)

[Baeten, Cuijpers, van Tilburg, EXPRESS, 2008]



16/21

/department of mathematics and computer science

Basic Parallel Process

Definition
A parallel pushdown automaton gives a parallel pushdown process

Theorem
A process p is parallel pushdown iff there is a regular process q with

p ↔b τi,o(∂i,o(q ‖ B))

where B is the bag: B = 1 +
∑
d∈D

i?d.(B ‖ o!d.1)

[Baeten, Cuijpers, van Tilburg, EXPRESS, 2008]

Definition
A basic parallel process is given by a guarded recursive specification

over the signature 0,1,+, a_, ‖

◮ Any basic parallel process is a parallel pushdown process



17/21

/department of mathematics and computer science

Example

X = c.1 + a.(X ‖ b.1)

is basic parallel, parallel pushdown and pushdown but not context-free

c c c c

bbb b

a a a

bbb

a

b



17/21

/department of mathematics and computer science

Example

X = c.1 + a.(X ‖ b.1)

is basic parallel, parallel pushdown and pushdown but not context-free

c c c c

bbb b

a a a

bbb

a

b

The bag is basic parallel, parallel pushdown but not pushdown, nor

context-free



17/21

/department of mathematics and computer science

Example

X = c.1 + a.(X ‖ b.1)

is basic parallel, parallel pushdown and pushdown but not context-free

c c c c

bbb b

a a a

bbb

a

b

The bag is basic parallel, parallel pushdown but not pushdown, nor

context-free

The stack is context-free, pushdown but not basic parallel, nor parallel

pushdown



18/21

/department of mathematics and computer science

Computable Process

Definition
A computable process is a bisimulation equivalence class of a

computable transition system

Theorem
A process is computable iff it is an abstraction of a process given by a
guarded recursive specification over communication algebra
[FSEN, 2009]

Theorem
A process is computable iff it can be written as a regular process
communicating with two stacks [FSEN, 2009]



19/21

/department of mathematics and computer science

Process Classes

regular

CFP

unbounded

PDP

BPP

PPDP

computable



20/21

/department of mathematics and computer science

Conclusion

◮ Integration of automata theory and process theory is beneficial for

both theories

◮ This integrated theory can be a first-year course in any academic

bachelor program in computer science (or related subjects)

◮ Draft syllabus available



21/21

/department of mathematics and computer science

Thank you!

Questions?


