Models of Computation: Automata and Processes

An Overview

Paul van Tilburg

(joint work with Jos Baeten, Bas Luttik and Pieter Cuijpers)

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

July 14, 2009

Introduction

Automata & Formal Language theory

- Back in the days: different model and real-world computers
- Fixed input string
- Input separated from output
- Batch process

Introduction

Automata & Formal Language theory

- Back in the days: different model and real-world computers
- Fixed input string
- Input separated from output
- Batch process
- Nowadays: one click as input
- Computers are reactive systems
- Interaction much more important

Introduction

Automata & Formal Language theory

- Back in the days: different model and real-world computers
- Fixed input string
- Input separated from output
- Batch process
- Nowadays: one click as input
- Computers are reactive systems
- Interaction much more important
- Note: Provides very useful models of computation

Introduction (2)

Process theory

- Split off, separate development
- Focuses on interaction
- Deals with concurrent setting

Integration

- Attempt reveals differences and similarities
- Use analogies to make the integration explicit
- Increase understanding of both theories

Introduction (2)

Process theory

- Split off, separate development
- Focuses on interaction
- Deals with concurrent setting

Integration

- Attempt reveals differences and similarities
- Use analogies to make the integration explicit
- Increase understanding of both theories
- Practical side: merge in undergraduate curriculum course

- Control is discrete: states and transitions: automaton
- Input, output: string or word over alphabet
- Alphabet: action, instruction, information

- Corresponds to regular language
- No memory!
- Two equivalences: language equivalence and isomorphism

Grammars and Recursive Specifications

/ department of mathematics and computer science

Grammars and Recursive Specifications

From Finite Automaton to recursive specification

/ department of mathematics and computer science

Structural Operational Semantics [Plotkin, JLAP, 2004]

Similarities with Process Algebra

- Finite Automaton = finite labelled transition system
- ► Grammar = recursive specification over **0**, **1**, +, ·, *a*
- Regular expression = closed term over 0, 1, +, ·, a, *

- Finite Automaton = finite labelled transition system
- Grammar = recursive specification over $\mathbf{0}, \mathbf{1}, +, \cdot, a$
- ► Regular expression = closed term over 0, 1, +, ·, a, *

Basic Process Algebra

- 0 inaction, unsuccessful termination, deadlock
- 1 empty process, skip, successful termination
- ▶ a_ action prefix
- _+_ alternative composition, choice
- _·_ sequential composition

[Baeten, Basten, Reniers, Process Algebra, Cambridge UP, 2009]

- In process theory a difference equivalent is used
- Expose interaction and preserve choices

We call the largest symmetric relation \boldsymbol{R} such that

- if $p \xrightarrow{a} p'$ then there exists q' such that $q \xrightarrow{a} q'$ and $p' \mathrel{R} q'$
- if $q \xrightarrow{a} q'$ then there exists p' such that $p \xrightarrow{a} p'$ and $p' \mathrel{R} q'$
- if $p \downarrow$ implies $q \downarrow$ and vice versa

a bisimulation relation

▶ If $(p,q) \in R$, then p and q are *bisimilar* (notation: p ⇔ q)

A *regular language* is a language equivalence class of a finite (non-deterministic) automaton

A *regular language* is a language equivalence class of a finite (non-deterministic) automaton

Definition

A *regular process* is a bisimulation equivalence class of a finite, non-deterministic automaton

A *regular language* is a language equivalence class of a finite (non-deterministic) automaton

Definition

A *regular process* is a bisimulation equivalence class of a finite, non-deterministic automaton

A regular process is given by a recursive specification over the signature 0, 1, a, +

A *regular language* is a language equivalence class of a finite (non-deterministic) automaton

Definition

A *regular process* is a bisimulation equivalence class of a finite, non-deterministic automaton

- A regular process is given by a recursive specification over the signature 0, 1, a, +
- Processes given by deterministic automata, and by regular expressions, form a subclass
 [Baeten, Corradini, Grabmayer, JACM 2007]

Pushdown Automaton

TU/e Technische Universiteit Eindhoven University of Technology

The Stack

$$S = \mathbf{1} + \sum_{d \in \mathcal{D}} i?d.S \cdot o!d.S$$

/ department of mathematics and computer science

Theorem

A process p is a pushdown process iff there is a regular process q with

$$p \simeq_{\mathbf{b}} \tau_{i,o}(\partial_{i,o}(q \parallel S))$$

Proof in [Baeten, Cuijpers, Luttik, van Tilburg, FSEN, 2009]

Theorem

A process \boldsymbol{p} is a pushdown process iff there is a regular process \boldsymbol{q} with

$$p \simeq_{\mathbf{b}} \tau_{i,o}(\partial_{i,o}(q \parallel S))$$

Proof in [Baeten, Cuijpers, Luttik, van Tilburg, FSEN, 2009]

Recursive specification

Every recursive specification over $\mathsf{BPA}_{0,1}$ with bounded branching denotes a pushdown process

• Example:
$$X = \mathbf{1} + aX \cdot b\mathbf{1}$$

$$X \xrightarrow{a} X \cdot b\mathbf{1} \xrightarrow{a} X \cdot b\mathbf{1} \cdot b\mathbf{1} \dots$$

Problem with 1-summands

 $X = aX \cdot Y + b\mathbf{1}$ $Y = \mathbf{1} + c\mathbf{1}$

Problem with 1-summands

- Recursive specifications over BPA_{0,1} can lead to unboundedness
- Cannot be done by our pushdown process due to stack and finite control
- Can be solved using a *forgetful stack* [Baeten, Cuijpers, van Tilburg, CONCUR, 2008]

- Context-free languages correspond to language accepted by PDAs
- Not the case with bisimulation! [Moller, 1996]
- *Fix:* do not allow for *pop choice* (to ensure existence specification)

- Context-free languages correspond to language accepted by PDAs
- Not the case with bisimulation! [Moller, 1996]
- *Fix:* do not allow for *pop choice* (to ensure existence specification)
- Recursive specification over BPA_{0,1} can lead to unbounded branching
- Fix: transparency-restricted Greibach normal form

- Context-free languages correspond to language accepted by PDAs
- Not the case with bisimulation! [Moller, 1996]
- *Fix:* do not allow for *pop choice* (to ensure existence specification)
- Recursive specification over BPA_{0,1} can lead to unbounded branching
- Fix: transparency-restricted Greibach normal form

Theorem

A process is a pop choice-free pushdown process iff it is definable by a transparency-restricted recursive specification [FSEN, 2009]

- Context-free languages correspond to language accepted by PDAs
- Not the case with bisimulation! [Moller, 1996]
- *Fix:* do not allow for *pop choice* (to ensure existence specification)
- Recursive specification over BPA_{0,1} can lead to unbounded branching
- Fix: transparency-restricted Greibach normal form

Theorem

A process is a pop choice-free pushdown process iff it is definable by a transparency-restricted recursive specification [FSEN, 2009]

- Not every pushdown process is context-free
- Decidability of bisimulation shown for this class!

A parallel pushdown automaton gives a parallel pushdown process

A parallel pushdown automaton gives a parallel pushdown process

Theorem

A process p is parallel pushdown iff there is a regular process q with

$$p \leq \mathbf{b} \tau_{i,o}(\partial_{i,o}(q \parallel B))$$

where B is the bag: $B = 1 + \sum_{d \in D} i?d.(B \parallel o!d.1)$ [Baeten, Cuijpers, van Tilburg, EXPRESS, 2008]

A parallel pushdown automaton gives a parallel pushdown process

Theorem

A process p is parallel pushdown iff there is a regular process q with

 $p \leftrightarrows_{\mathbf{b}} \tau_{i,o}(\partial_{i,o}(q \parallel B))$

where *B* is the bag: $B = 1 + \sum_{d \in D} i?d.(B \parallel o!d.1)$ [Baeten, Cuijpers, van Tilburg, EXPRESS, 2008]

Definition

A basic parallel process is given by a guarded recursive specification over the signature ${\bf 0}, {\bf 1}, +, a_-, \|$

Any basic parallel process is a parallel pushdown process

Example

$$X = c.\mathbf{1} + a.(X \parallel b.\mathbf{1})$$

is basic parallel, parallel pushdown and pushdown but not context-free

Example

$$X = c.\mathbf{1} + a.(X \parallel b.\mathbf{1})$$

is basic parallel, parallel pushdown and pushdown but not context-free

The bag is basic parallel, parallel pushdown but not pushdown, nor context-free

Example

$$X = c.\mathbf{1} + a.(X \parallel b.\mathbf{1})$$

is basic parallel, parallel pushdown and pushdown but not context-free

The bag is basic parallel, parallel pushdown but not pushdown, nor context-free The stack is context-free, pushdown but not basic parallel, nor parallel pushdown

A computable process is a bisimulation equivalence class of a computable transition system

Theorem

A process is computable iff it is an abstraction of a process given by a guarded recursive specification over communication algebra [FSEN, 2009]

Theorem

A process is computable iff it can be written as a regular process communicating with two stacks [FSEN, 2009]

- Integration of automata theory and process theory is beneficial for both theories
- This integrated theory can be a first-year course in any academic bachelor program in computer science (or related subjects)
- Draft syllabus available

Thank you!

Questions?

21/21