
/ department of mathematics and computer science

Finite Equational Bases for Fragments of CCS with
Restriction and Relabelling

Paul van Tilburg1

(joint work with Luca Aceto2, Anna Ingólfsdóttir2, Bas Luttik1)

1Department of Mathematics and Computer Science
Eindhoven University of Technology

2School of Computer Science
Reykjavík University

ProSe / March 27, 2008

2

/ department of mathematics and computer science

Outline

Introduction & Preliminaries

Restriction

Relabelling

Combinations

Concluding Remarks

3

/ department of mathematics and computer science

Introduction

I Based on earlier work:
• A Finite Equational Base for CCS with Left Merge and Communication Merge

– Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, Bas Luttik (2006)
• Finite Equational Bases for CCS with Restriction – Master’s Thesis

– Paul van Tilburg (2007)

I CS-Report 08-08 contains details and proofs

I Goal: show you how these proofs work

4

/ department of mathematics and computer science

Process Algebras and Equations

Process algebra:

I set of elements (processes)
I operations defined on this set

Process equation:

I pair of process terms: p ≈ q
I valid iff [[p]]∗= [[q]]∗ for all variable substitutions ∗

Equational theory: set of all valid equations

Equational base: set of valid equations from which all other valid
equations can be derived

4

/ department of mathematics and computer science

Process Algebras and Equations

Process algebra:

I set of elements (processes)
I operations defined on this set

Process equation:

I pair of process terms: p ≈ q
I valid iff [[p]]∗= [[q]]∗ for all variable substitutions ∗

Equational theory: set of all valid equations

Equational base: set of valid equations from which all other valid
equations can be derived

4

/ department of mathematics and computer science

Process Algebras and Equations

Process algebra:

I set of elements (processes)
I operations defined on this set

Process equation:

I pair of process terms: p ≈ q
I valid iff [[p]]∗= [[q]]∗ for all variable substitutions ∗

Equational theory: set of all valid equations

Equational base: set of valid equations from which all other valid
equations can be derived

5

/ department of mathematics and computer science

CCS

CCS: Calculus of Communication Systems – Robin Milner

Syntax: set of process terms T generated by

T ::= 0 | x | a.T | T + T | T ‖ T | T \ L | T [f]
(a ∈ A, x ∈ V, L ⊂ A, f : A → A)

Previous result: finite equational base for a fragment of CCS

Goal: finite equational base for full CCS

Result: finite equational base for CCS without communication

5

/ department of mathematics and computer science

CCS

CCS: Calculus of Communication Systems – Robin Milner

Syntax: set of process terms T generated by

T ::= 0 | x | a.T | T + T | T ‖ T | T \ L | T [f]
(a ∈ A, x ∈ V, L ⊂ A, f : A → A)

Previous result: finite equational base for a fragment of CCS

Goal: finite equational base for full CCS

Result: finite equational base for CCS without communication

5

/ department of mathematics and computer science

CCS

CCS: Calculus of Communication Systems – Robin Milner

Syntax: set of process terms T generated by

T ::= 0 | x | a.T | T + T | T ‖ T | T \ L | T [f]
(a ∈ A, x ∈ V, L ⊂ A, f : A → A)

Previous result: finite equational base for a fragment of CCS

Goal: finite equational base for full CCS

Result: finite equational base for CCS without communication

6

/ department of mathematics and computer science

BCCS

BCCS: basic fragment of CCS

Syntax: set of process terms T generated by

T ::= 0 | x | a.T | T + T (a ∈ A, x ∈ V)

set of closed process terms T C : terms without variables

Semantics: labelled transition system for a term p ∈ T given by

1
a.p

a−→ p
2

p
a−→ p′

p+ q
a−→ p′

3
q

a−→ q′

p+ q
a−→ q′

Bisimulation: largest symmetric relation↔ such that

if p a−→ p′ and p↔ q, then ∃q′ s.t. q a−→ q′ and p′ ↔ q′

6

/ department of mathematics and computer science

BCCS

BCCS: basic fragment of CCS

Syntax: set of process terms T generated by

T ::= 0 | x | a.T | T + T (a ∈ A, x ∈ V)

set of closed process terms T C : terms without variables

Semantics: labelled transition system for a term p ∈ T given by

1
a.p

a−→ p
2

p
a−→ p′

p+ q
a−→ p′

3
q

a−→ q′

p+ q
a−→ q′

Bisimulation: largest symmetric relation↔ such that

if p a−→ p′ and p↔ q, then ∃q′ s.t. q a−→ q′ and p′ ↔ q′

6

/ department of mathematics and computer science

BCCS

BCCS: basic fragment of CCS

Syntax: set of process terms T generated by

T ::= 0 | x | a.T | T + T (a ∈ A, x ∈ V)

set of closed process terms T C : terms without variables

Semantics: labelled transition system for a term p ∈ T given by

1
a.p

a−→ p
2

p
a−→ p′

p+ q
a−→ p′

3
q

a−→ q′

p+ q
a−→ q′

Bisimulation: largest symmetric relation↔ such that

if p a−→ p′ and p↔ q, then ∃q′ s.t. q a−→ q′ and p′ ↔ q′

7

/ department of mathematics and computer science

BCCS (2)

Construct the process algebra P:

Elements: ↔ is an equivalence relation:

T /↔ results in classes [p] = {q | p↔ q}

Operators: ↔ is a congruence:

if p↔ p′, then a.p↔ a.p′ and
if p↔ p′ and q ↔ q′, then p+ q ↔ p′ + q′

induces operations on the equivalence classes

0 = [0], a.[p] = [a.p], [p] + [q] = [p+ q]

7

/ department of mathematics and computer science

BCCS (2)

Construct the process algebra P:

Elements: ↔ is an equivalence relation:

T /↔ results in classes [p] = {q | p↔ q}
Operators: ↔ is a congruence:

if p↔ p′, then a.p↔ a.p′ and
if p↔ p′ and q ↔ q′, then p+ q ↔ p′ + q′

induces operations on the equivalence classes

0 = [0], a.[p] = [a.p], [p] + [q] = [p+ q]

8

/ department of mathematics and computer science

BCCS (3)

P has a well-known equational base E:

(A1) x+ y ≈ y + x
(A2) (x+ y) + z ≈ x+ (y + z)
(A3) x+ x ≈ x
(A4) x+ 0 ≈ x

Theorem
E is a (finite) equational base for P

9

/ department of mathematics and computer science

Proof Strategy

Soundness: if p ≈ q derivable, then p↔ q

Completeness: if p↔ q, then p ≈ q derivable

How to prove?

I find normal forms s and t such that p ≈ s and q ≈ t

• so: if s↔ t, then s ≈ t derivable

I s↔ t means that [[s]]ν= [[t]]ν for all ν : V → P

• so: if [[s]]ν = [[t]]ν for all ν : V → P, then s ≈ t derivable

I find a distinguishing valuation ∗ : V → P for s, t s.t.
if s 6≈ t then [[s]]∗ 6= [[t]]∗ for all s, t

9

/ department of mathematics and computer science

Proof Strategy

Soundness: if p ≈ q derivable, then p↔ q

Completeness: if p↔ q, then p ≈ q derivable

How to prove?

I find normal forms s and t such that p ≈ s and q ≈ t

• so: if s↔ t, then s ≈ t derivable

I s↔ t means that [[s]]ν= [[t]]ν for all ν : V → P

• so: if [[s]]ν = [[t]]ν for all ν : V → P, then s ≈ t derivable

I find a distinguishing valuation ∗ : V → P for s, t s.t.
if s 6≈ t then [[s]]∗ 6= [[t]]∗ for all s, t

9

/ department of mathematics and computer science

Proof Strategy

Soundness: if p ≈ q derivable, then p↔ q

Completeness: if p↔ q, then p ≈ q derivable

How to prove?

I find normal forms s and t such that p ≈ s and q ≈ t

• so: if s↔ t, then s ≈ t derivable

I s↔ t means that [[s]]ν= [[t]]ν for all ν : V → P

• so: if [[s]]ν = [[t]]ν for all ν : V → P, then s ≈ t derivable

I find a distinguishing valuation ∗ : V → P for s, t s.t.
if s 6≈ t then [[s]]∗ 6= [[t]]∗ for all s, t

9

/ department of mathematics and computer science

Proof Strategy

Soundness: if p ≈ q derivable, then p↔ q

Completeness: if p↔ q, then p ≈ q derivable

How to prove?

I find normal forms s and t such that p ≈ s and q ≈ t
• so: if s↔ t, then s ≈ t derivable

I s↔ t means that [[s]]ν= [[t]]ν for all ν : V → P

• so: if [[s]]ν = [[t]]ν for all ν : V → P, then s ≈ t derivable

I find a distinguishing valuation ∗ : V → P for s, t s.t.
if s 6≈ t then [[s]]∗ 6= [[t]]∗ for all s, t

9

/ department of mathematics and computer science

Proof Strategy

Soundness: if p ≈ q derivable, then p↔ q

Completeness: if p↔ q, then p ≈ q derivable

How to prove?

I find normal forms s and t such that p ≈ s and q ≈ t
• so: if s↔ t, then s ≈ t derivable

I s↔ t means that [[s]]ν= [[t]]ν for all ν : V → P

• so: if [[s]]ν = [[t]]ν for all ν : V → P, then s ≈ t derivable

I find a distinguishing valuation ∗ : V → P for s, t s.t.
if s 6≈ t then [[s]]∗ 6= [[t]]∗ for all s, t

9

/ department of mathematics and computer science

Proof Strategy

Soundness: if p ≈ q derivable, then p↔ q

Completeness: if p↔ q, then p ≈ q derivable

How to prove?

I find normal forms s and t such that p ≈ s and q ≈ t
• so: if s↔ t, then s ≈ t derivable

I s↔ t means that [[s]]ν= [[t]]ν for all ν : V → P
• so: if [[s]]ν = [[t]]ν for all ν : V → P, then s ≈ t derivable

I find a distinguishing valuation ∗ : V → P for s, t s.t.
if s 6≈ t then [[s]]∗ 6= [[t]]∗ for all s, t

9

/ department of mathematics and computer science

Proof Strategy

Soundness: if p ≈ q derivable, then p↔ q

Completeness: if p↔ q, then p ≈ q derivable

How to prove?

I find normal forms s and t such that p ≈ s and q ≈ t
• so: if s↔ t, then s ≈ t derivable

I s↔ t means that [[s]]ν= [[t]]ν for all ν : V → P
• so: if [[s]]ν = [[t]]ν for all ν : V → P, then s ≈ t derivable

I find a distinguishing valuation ∗ : V → P for s, t s.t.
if s 6≈ t then [[s]]∗ 6= [[t]]∗ for all s, t

10

/ department of mathematics and computer science

Proof Tools

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

xj

Branching degree:
the number of outgoing transitions of a process

Example

I the branching degree of a.0 + a.0 + b.0 + b.c.0 is 3

I the branching degree of

ξi =
∑
a∈A

i∑
j=1

aj .0 = a.0 + a.a.0 + · · ·+ ai.0 + b.0 + . . . is i · |A|

11

/ department of mathematics and computer science

Completeness Proof

Distinguishing valuation
Let w ≥ 1 and let d·e : V → (N− {0, 1}) be some injective function

�w(x) = a.ψdxe·w with ψi =
i∑

j=1

ai.0

Example
Distinguishing a.s from x:

[[a.s]]�w
a−→ s

[[x]]�w = a.ψdxe·w
a−→ ψdxe·w (branching degree is dxe · w)

11

/ department of mathematics and computer science

Completeness Proof

Distinguishing valuation
Let w ≥ 1 and let d·e : V → (N− {0, 1}) be some injective function

�w(x) = a.ψdxe·w with ψi =
i∑

j=1

ai.0

Example
Distinguishing a.s from x:

[[a.s]]�w
a−→ s

[[x]]�w = a.ψdxe·w
a−→ ψdxe·w (branching degree is dxe · w)

12

/ department of mathematics and computer science

Adding Restriction

P\: BCCS extended with restriction

Syntax: set of process terms T\ generated by

T ::= . . . | T \ L (L ⊆ A)

Semantics: labelled transition system for a term p ∈ T given by

4
p

a−→ p′ a, a 6∈ L
p \ L a−→ p′ \ L

Example
if p = (a.0 + b.0) \ {a}, then p 6 a−→, but p b−→ 0.

12

/ department of mathematics and computer science

Adding Restriction

P\: BCCS extended with restriction

Syntax: set of process terms T\ generated by

T ::= . . . | T \ L (L ⊆ A)

Semantics: labelled transition system for a term p ∈ T given by

4
p

a−→ p′ a, a 6∈ L
p \ L a−→ p′ \ L

Example
if p = (a.0 + b.0) \ {a}, then p 6 a−→, but p b−→ 0.

13

/ department of mathematics and computer science

Equational Base

P\ has an equational base E\:

(RS1a) x \ ∅ ≈ x
(RS1b) x \ A ≈ 0
(RS2) 0 \ L ≈ 0

(RS3) a.x \ L ≈
{

0 if a, a ∈ L
a.(x \ L) if a, a 6∈ L

(RS4) (x+ y) \ L ≈ x \ L+ y \ L

(RS6) (x \ L) \K ≈ x \ (L ∪K)

14

/ department of mathematics and computer science

Distinguishing Issues

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

xj \ Lj (Lj ⊂ A)

Example
Distinguish issues givenA = {a, b}, V = {x, y}:

I a.s from x \ {b}
I x \ L from y \ L
I x \ ∅ from x \ {a}+ x \ {b}

14

/ department of mathematics and computer science

Distinguishing Issues

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

xj \ Lj (Lj ⊂ A)

Example
Distinguish issues givenA = {a, b}, V = {x, y}:

I a.s from x \ {b}
I x \ L from y \ L
I x \ ∅ from x \ {a}+ x \ {b}

14

/ department of mathematics and computer science

Distinguishing Issues

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

xj \ Lj (Lj ⊂ A)

Example
Distinguish issues givenA = {a, b}, V = {x, y}:

I a.s from x \ {b}
I x \ L from y \ L
I x \ ∅ from x \ {a}+ x \ {b}

14

/ department of mathematics and computer science

Distinguishing Issues

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

xj \ Lj (Lj ⊂ A)

Example
Distinguish issues givenA = {a, b}, V = {x, y}:

I a.s from x \ {b}
I x \ L from y \ L
I x \ ∅ from x \ {a}+ x \ {b}

15

/ department of mathematics and computer science

Completeness Proof

Distinguishing valuation
Let w ≥ 1 and let d·e : V → (N− {0, 1}) be some injective function

�w(x) =
∑
a∈A

a.ξdxe·w with ξi =
∑
a∈A

i∑
j=1

ai.0

Example

15

/ department of mathematics and computer science

Completeness Proof

Distinguishing valuation
Let w ≥ 1 and let d·e : V → (N− {0, 1}) be some injective function

�w(x) =
∑
a∈A

a.ξdxe·w with ξi =
∑
a∈A

i∑
j=1

ai.0

Example
Distinguishing a.s from x \ {b}:

[[a.s]]�w
a−→ s

[[x\{b}]]�w
a−→ ξdxe·w\{b} (branching degree is dxe · w · |A − {b}|)

15

/ department of mathematics and computer science

Completeness Proof

Distinguishing valuation
Let w ≥ 1 and let d·e : V → (N− {0, 1}) be some injective function

�w(x) =
∑
a∈A

a.ξdxe·w with ξi =
∑
a∈A

i∑
j=1

ai.0

Example
Distinguishing x \ L from y \ L:

[[x \ L]]�w
a−→ ξdxe·w \ L (a 6∈ L,br.deg. dxe · w · |A − L|)

[[y \ L]]�w
a−→ ξdye·w \ L (a 6∈ L,br.deg. dye · w · |A − L|)

15

/ department of mathematics and computer science

Completeness Proof

Distinguishing valuation
Let w ≥ 1 and let d·e : V → (N− {0, 1}) be some injective function

�w(x) =
∑
a∈A

a.ξdxe·w with ξi =
∑
a∈A

i∑
j=1

ai.0

Example
Distinguishing x \ ∅ from x \ {a}+ x \ {b}:

[[x \ ∅]]�w
a−→ ξdxe·w

[[x \ {a}+ x \ {b}]]�w
a−→ ξdye·w \ {b} or

b−→ ξdye·w \ {a}

16

/ department of mathematics and computer science

Adding Relabelling

P[]: BCCS extended with relabelling

Syntax: set of process terms T[] generated by

T ::= . . . | T[f] (f : A → A)

Semantics: labelled transition system for a term p ∈ T given by

5
p

a−→ p′

p[f]
f(a)−→ p′[f]

Example
if p = (a.0 + b.c.0)[b 7→ a], then p a−→ 0 and p a−→ c.0.

16

/ department of mathematics and computer science

Adding Relabelling

P[]: BCCS extended with relabelling

Syntax: set of process terms T[] generated by

T ::= . . . | T[f] (f : A → A)

Semantics: labelled transition system for a term p ∈ T given by

5
p

a−→ p′

p[f]
f(a)−→ p′[f]

Example
if p = (a.0 + b.c.0)[b 7→ a], then p a−→ 0 and p a−→ c.0.

17

/ department of mathematics and computer science

Equational Base

P[] has an equational base E[]:

(RL1) x[Id] ≈ x
(RL2) 0[f] ≈ 0
(RL3) (a.x)[f] ≈ f(a).(x[f])
(RL4) (x+ y)[f]≈ x[f] +y[f]

(RL6) (x[f])[g] ≈ x[g ◦ f]

18

/ department of mathematics and computer science

Distinguishing Issues

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

xj [fj] (fj : A → A)

Example
Distinguish issues givenA = {a, b}, V = {x, y}:

I a.s from x[b 7→ a]
I x[Id] from x[a 7→ b, b 7→ a]

18

/ department of mathematics and computer science

Distinguishing Issues

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

xj [fj] (fj : A → A)

Example
Distinguish issues givenA = {a, b}, V = {x, y}:

I a.s from x[b 7→ a]
I x[Id] from x[a 7→ b, b 7→ a]

18

/ department of mathematics and computer science

Distinguishing Issues

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

xj [fj] (fj : A → A)

Example
Distinguish issues givenA = {a, b}, V = {x, y}:

I a.s from x[b 7→ a]
I x[Id] from x[a 7→ b, b 7→ a]

19

/ department of mathematics and computer science

Completeness Proof

Distinguishing valuation
Let b·c : A → P be some injective function,
let w ∈ P larger than any number in the range of b·c, and
let d·e : V → {m ∈ P | m > w} be another injective function

�w(x) = a.ζdxe,w with ζi,w = a.0 +
∑
b∈A

w∑
j=1

bi·bbc
j
.0

Example

19

/ department of mathematics and computer science

Completeness Proof

Distinguishing valuation
Let b·c : A → P be some injective function,
let w ∈ P larger than any number in the range of b·c, and
let d·e : V → {m ∈ P | m > w} be another injective function

�w(x) = a.ζdxe,w with ζi,w = a.0 +
∑
b∈A

w∑
j=1

bi·bbc
j
.0

Example
Distinguishing a.s from x[b 7→ a]:

[[a.s]]�w
a−→ s

[[x[b 7→ a]]]�w
a−→ ζdxe,w[b 7→ a] (branching degree 1 + w · |A|)

19

/ department of mathematics and computer science

Completeness Proof

Distinguishing valuation
Let b·c : A → P be some injective function,
let w ∈ P larger than any number in the range of b·c, and
let d·e : V → {m ∈ P | m > w} be another injective function

�w(x) = a.ζdxe,w with ζi,w = a.0 +
∑
b∈A

w∑
j=1

bi·bbc
j
.0

Example
Distinguishing x[Id] from x[a 7→ b, b 7→ a]:

[[x[Id]]]�w
a−→ ζdxe,w

[[x[a 7→ b, b 7→ a]]]�w
b−→ ζdye·w[a 7→ b, b 7→ a]

20

/ department of mathematics and computer science

Combining Restriction & Relabelling

P\,[] has an equational base E\,[] combining E\, E[], and:

(RR1) x[f] \L ≈ (x \ f−1(L))[f]
(RR2) (x \ L)[f]≈ (x \ L)[g] if f � (A− L) = g � (A− L)

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

(xj \ Lj)[fj] (Lj ⊂ A, fj : A → A)

21

/ department of mathematics and computer science

Combining Restriction & Relabelling (2)

Distinguishing valuation
Let b·c : A → P be some injective function,
let w ∈ P be larger than any number in the range of b·c, and
let d·e : V → {m ∈ P | m > w} be another injective function

�w(x) =
∑
a∈A

a.χdxe,w with χi,w =
∑
a∈A

a.0 +
w∑
j=1

ai·bac
j
.0



22

/ department of mathematics and computer science

Adding Interleaving

Syntax
set of process terms T ‖ generated by

T ::= . . . | T ‖ T | T T T

Standard axioms

(LM1) x T 0 ≈ x
(LM2) 0 T x ≈ 0
(LM3) a.x T y ≈ a.(x ‖ y)
(LM4) (x+ y) T z ≈ x T z + y T z
(LM5) (x T y) T z ≈ x T (y ‖ z)

(M) x ‖ y ≈ x T y + y T x

22

/ department of mathematics and computer science

Adding Interleaving

Syntax
set of process terms T ‖ generated by

T ::= . . . | T ‖ T | T T T

Distributive axioms
Due to absence of communication:

(RS5) (x T y) \ L≈ x \ L T y \ L

(RL5) (x T y)[f] ≈ x[f] T y[f]

23

/ department of mathematics and computer science

Adding Interleaving (2)

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

(xj \ Lj)[fj] T sj (Lj ⊂ A, fj : A → A)

Previously given proofs still work!

Example

[[x \ L T s]]�w
a−→ (ξdxe·w \ L) ‖ s

24

/ department of mathematics and computer science

Concluding Remarks

Results
I Proved completeness of finite equational bases for fragments

• with restriction
• with relabelling
• with combination of restriction and relabelling
• with and without interleaving

I While recursion has been left out, the addition changes nothing

Future work

I Non-trivial addition of communication merge remains!

25

/ department of mathematics and computer science

Questions?

Questions?

	Introduction & Preliminaries
	Restriction
	Relabelling
	Combinations
	Concluding Remarks

