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Introduction

I Based on earlier work:
• A Finite Equational Base for CCS with Left Merge and Communication Merge

– Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, Bas Luttik (2006)
• Finite Equational Bases for CCS with Restriction – Master’s Thesis

– Paul van Tilburg (2007)

I CS-Report 08-08 contains details and proofs

I Goal: show you how these proofs work
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Process Algebras and Equations

Process algebra:

I set of elements (processes)
I operations defined on this set

Process equation:

I pair of process terms: p ≈ q
I valid iff [[p]]∗= [[q]]∗ for all variable substitutions ∗

Equational theory: set of all valid equations

Equational base: set of valid equations from which all other valid
equations can be derived
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CCS

CCS: Calculus of Communication Systems – Robin Milner

Syntax: set of process terms T generated by

T ::= 0 | x | a.T | T + T | T ‖ T | T \ L | T [f ]
(a ∈ A, x ∈ V, L ⊂ A, f : A → A)

Previous result: finite equational base for a fragment of CCS

Goal: finite equational base for full CCS

Result: finite equational base for CCS without communication
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BCCS

BCCS: basic fragment of CCS

Syntax: set of process terms T generated by

T ::= 0 | x | a.T | T + T (a ∈ A, x ∈ V)

set of closed process terms T C : terms without variables

Semantics: labelled transition system for a term p ∈ T given by

1
a.p

a−→ p
2

p
a−→ p′

p+ q
a−→ p′

3
q

a−→ q′

p+ q
a−→ q′

Bisimulation: largest symmetric relation↔ such that

if p a−→ p′ and p↔ q, then ∃q′ s.t. q a−→ q′ and p′ ↔ q′
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BCCS (2)

Construct the process algebra P:

Elements: ↔ is an equivalence relation:

T /↔ results in classes [p] = {q | p↔ q}

Operators: ↔ is a congruence:

if p↔ p′, then a.p↔ a.p′ and
if p↔ p′ and q ↔ q′, then p+ q ↔ p′ + q′

induces operations on the equivalence classes

0 = [0], a.[p] = [a.p], [p] + [q] = [p+ q]



7

/ department of mathematics and computer science

BCCS (2)

Construct the process algebra P:

Elements: ↔ is an equivalence relation:

T /↔ results in classes [p] = {q | p↔ q}
Operators: ↔ is a congruence:

if p↔ p′, then a.p↔ a.p′ and
if p↔ p′ and q ↔ q′, then p+ q ↔ p′ + q′

induces operations on the equivalence classes

0 = [0], a.[p] = [a.p], [p] + [q] = [p+ q]



8

/ department of mathematics and computer science

BCCS (3)

P has a well-known equational base E:

(A1) x+ y ≈ y + x
(A2) (x+ y) + z ≈ x+ (y + z)
(A3) x+ x ≈ x
(A4) x+ 0 ≈ x

Theorem
E is a (finite) equational base for P
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Proof Strategy

Soundness: if p ≈ q derivable, then p↔ q

Completeness: if p↔ q, then p ≈ q derivable

How to prove?

I find normal forms s and t such that p ≈ s and q ≈ t

• so: if s↔ t, then s ≈ t derivable

I s↔ t means that [[s]]ν= [[t]]ν for all ν : V → P

• so: if [[s]]ν = [[t]]ν for all ν : V → P, then s ≈ t derivable

I find a distinguishing valuation ∗ : V → P for s, t s.t.
if s 6≈ t then [[s]]∗ 6= [[t]]∗ for all s, t
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Proof Tools

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

xj

Branching degree:
the number of outgoing transitions of a process

Example

I the branching degree of a.0 + a.0 + b.0 + b.c.0 is 3

I the branching degree of

ξi =
∑
a∈A

i∑
j=1

aj .0 = a.0 + a.a.0 + · · ·+ ai.0 + b.0 + . . . is i · |A|
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Completeness Proof

Distinguishing valuation
Let w ≥ 1 and let d·e : V → (N− {0, 1}) be some injective function

�w(x) = a.ψdxe·w with ψi =
i∑

j=1

ai.0

Example
Distinguishing a.s from x:

[[a.s]]�w
a−→ s

[[x]]�w = a.ψdxe·w
a−→ ψdxe·w (branching degree is dxe · w)



11

/ department of mathematics and computer science

Completeness Proof

Distinguishing valuation
Let w ≥ 1 and let d·e : V → (N− {0, 1}) be some injective function

�w(x) = a.ψdxe·w with ψi =
i∑

j=1

ai.0

Example
Distinguishing a.s from x:

[[a.s]]�w
a−→ s

[[x]]�w = a.ψdxe·w
a−→ ψdxe·w (branching degree is dxe · w)



12

/ department of mathematics and computer science

Adding Restriction

P\: BCCS extended with restriction

Syntax: set of process terms T\ generated by

T ::= . . . | T \ L (L ⊆ A)

Semantics: labelled transition system for a term p ∈ T given by

4
p

a−→ p′ a, a 6∈ L
p \ L a−→ p′ \ L

Example
if p = (a.0 + b.0) \ {a}, then p 6 a−→, but p b−→ 0.
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Equational Base

P\ has an equational base E\:

(RS1a) x \ ∅ ≈ x
(RS1b) x \ A ≈ 0
(RS2) 0 \ L ≈ 0

(RS3) a.x \ L ≈
{

0 if a, a ∈ L
a.(x \ L) if a, a 6∈ L

(RS4) (x+ y) \ L ≈ x \ L+ y \ L

(RS6) (x \ L) \K ≈ x \ (L ∪K)
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Distinguishing Issues

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

xj \ Lj (Lj ⊂ A)

Example
Distinguish issues givenA = {a, b}, V = {x, y}:

I a.s from x \ {b}
I x \ L from y \ L
I x \ ∅ from x \ {a}+ x \ {b}
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Completeness Proof

Distinguishing valuation
Let w ≥ 1 and let d·e : V → (N− {0, 1}) be some injective function

�w(x) =
∑
a∈A

a.ξdxe·w with ξi =
∑
a∈A

i∑
j=1

ai.0

Example
Distinguishing x \ ∅ from x \ {a}+ x \ {b}:

[[x \ ∅]]�w
a−→ ξdxe·w

[[x \ {a}+ x \ {b}]]�w
a−→ ξdye·w \ {b} or

b−→ ξdye·w \ {a}
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Adding Relabelling

P[]: BCCS extended with relabelling

Syntax: set of process terms T[] generated by

T ::= . . . | T[f ] (f : A → A)

Semantics: labelled transition system for a term p ∈ T given by

5
p

a−→ p′

p[f ]
f(a)−→ p′[f ]

Example
if p = (a.0 + b.c.0)[b 7→ a], then p a−→ 0 and p a−→ c.0.
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Equational Base

P[] has an equational base E[]:

(RL1) x[Id ] ≈ x
(RL2) 0[f ] ≈ 0
(RL3) (a.x)[f ] ≈ f(a).(x[f ])
(RL4) (x+ y)[f ]≈ x[f ] +y[f ]

(RL6) (x[f ])[g] ≈ x[g ◦ f ]
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Distinguishing Issues

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

xj [fj ] (fj : A → A)

Example
Distinguish issues givenA = {a, b}, V = {x, y}:

I a.s from x[b 7→ a]
I x[Id ] from x[a 7→ b, b 7→ a]
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Completeness Proof

Distinguishing valuation
Let b·c : A → P be some injective function,
let w ∈ P larger than any number in the range of b·c, and
let d·e : V → {m ∈ P | m > w} be another injective function

�w(x) = a.ζdxe,w with ζi,w = a.0 +
∑
b∈A

w∑
j=1

bi·bbc
j
.0

Example
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[[a.s]]�w
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19

/ department of mathematics and computer science

Completeness Proof

Distinguishing valuation
Let b·c : A → P be some injective function,
let w ∈ P larger than any number in the range of b·c, and
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�w(x) = a.ζdxe,w with ζi,w = a.0 +
∑
b∈A

w∑
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j
.0

Example
Distinguishing x[Id ] from x[a 7→ b, b 7→ a]:

[[x[Id ]]]�w
a−→ ζdxe,w

[[x[a 7→ b, b 7→ a]]]�w
b−→ ζdye·w[a 7→ b, b 7→ a]
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Combining Restriction & Relabelling

P\,[] has an equational base E\,[] combining E\, E[], and:

(RR1) x[f ] \L ≈ (x \ f−1(L))[f ]
(RR2) (x \ L)[f ]≈ (x \ L)[g] if f � (A− L) = g � (A− L)

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

(xj \ Lj)[fj ] (Lj ⊂ A, fj : A → A)
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Combining Restriction & Relabelling (2)

Distinguishing valuation
Let b·c : A → P be some injective function,
let w ∈ P be larger than any number in the range of b·c, and
let d·e : V → {m ∈ P | m > w} be another injective function

�w(x) =
∑
a∈A

a.χdxe,w with χi,w =
∑
a∈A

a.0 +
w∑
j=1

ai·bac
j
.0


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Adding Interleaving

Syntax
set of process terms T ‖ generated by

T ::= . . . | T ‖ T | T T T

Standard axioms

(LM1) x T 0 ≈ x
(LM2) 0 T x ≈ 0
(LM3) a.x T y ≈ a.(x ‖ y)
(LM4) (x+ y) T z ≈ x T z + y T z
(LM5) (x T y) T z ≈ x T (y ‖ z)

(M) x ‖ y ≈ x T y + y T x
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Adding Interleaving

Syntax
set of process terms T ‖ generated by

T ::= . . . | T ‖ T | T T T

Distributive axioms
Due to absence of communication:

(RS5) (x T y) \ L≈ x \ L T y \ L

(RL5) (x T y)[f ] ≈ x[f ] T y[f ]
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Adding Interleaving (2)

Normal Forms
For every process p there exists a normal form s such that

s =
∑
i∈I

ai.si +
∑
j∈J

(xj \ Lj)[fj ] T sj (Lj ⊂ A, fj : A → A)

Previously given proofs still work!

Example

[[x \ L T s]]�w
a−→ (ξdxe·w \ L) ‖ s
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Concluding Remarks

Results
I Proved completeness of finite equational bases for fragments

• with restriction
• with relabelling
• with combination of restriction and relabelling
• with and without interleaving

I While recursion has been left out, the addition changes nothing

Future work

I Non-trivial addition of communication merge remains!
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Questions?

Questions?
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