Finite Equational Bases for Fragments of CCS with Restriction and Relabelling

Paul van Tilburg¹

(joint work with Luca Aceto², Anna Ingólfsdóttir², Bas Luttik¹)

¹ Department of Mathematics and Computer Science Eindhoven University of Technology

> ²School of Computer Science Reykjavík University

ProSe / March 27, 2008

Outline

Introduction & Preliminaries

Restriction

Relabelling

Combinations

Concluding Remarks

- Based on earlier work:
 - A Finite Equational Base for CCS with Left Merge and Communication Merge
 - Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, Bas Luttik (2006)
 - Finite Equational Bases for CCS with Restriction Master's Thesis
 - Paul van Tilburg (2007)
- CS-Report 08-08 contains details and proofs
- Goal: show you how these proofs work

Process algebra:

- set of elements (processes)
- operations defined on this set

Process algebra:

- set of elements (processes)
- operations defined on this set

Process equation:

- pair of process terms: $p \approx q$
- lacktriangle valid iff $[\![p]\!]_* = [\![q]\!]_*$ for all variable substitutions *

Process algebra:

- set of elements (processes)
- operations defined on this set

Process equation:

- pair of process terms: $p \approx q$
- ▶ valid iff $[p]_* = [q]_*$ for all variable substitutions *

Equational theory: set of all valid equations

Equational base: set of valid equations from which all other valid equations can be derived

CCS: Calculus of Communication Systems - Robin Milner

Syntax: set of process terms T generated by

$$\mathsf{T} ::= \mathbf{0} \mid x \mid a.\mathsf{T} \mid \mathsf{T} + \mathsf{T} \mid T \parallel T \mid T \setminus L \mid T[f]$$
$$(a \in \mathcal{A}, x \in \mathcal{V}, L \subset \mathcal{A}, f : \mathcal{A} \to \mathcal{A})$$

CCS: Calculus of Communication Systems - Robin Milner

Syntax: set of process terms T generated by

$$\mathsf{T} ::= \mathbf{0} \mid x \mid a.\mathsf{T} \mid \mathsf{T} + \mathsf{T} \mid T \parallel T \mid T \setminus L \mid T[f]$$
$$(a \in \mathcal{A}, x \in \mathcal{V}, L \subset \mathcal{A}, f : \mathcal{A} \to \mathcal{A})$$

Previous result: finite equational base for a fragment of CCS

CCS: Calculus of Communication Systems - Robin Milner

Syntax: set of process terms T generated by

$$\begin{split} \mathsf{T} &::= \mathbf{0} \mid x \mid a.\mathsf{T} \mid \mathsf{T} + \mathsf{T} \mid T \parallel T \mid T \setminus L \mid T[f] \\ & (a \in \mathcal{A}, x \in \mathcal{V}, L \subset \mathcal{A}, f : \mathcal{A} \to \mathcal{A}) \end{split}$$

Previous result: finite equational base for a fragment of CCS

Goal: finite equational base for full CCS

Result: finite equational base for CCS without communication

BCCS: basic fragment of CCS

Syntax: set of process terms T generated by

$$\mathsf{T} \, ::= \, \mathbf{0} \, \mid \, x \, \mid \, a.\mathsf{T} \, \mid \, \mathsf{T} + \mathsf{T} \qquad (a \in \mathcal{A}, x \in \mathcal{V})$$

set of closed process terms \mathcal{T}^C : terms without variables

BCCS: basic fragment of CCS

Syntax: set of process terms T generated by

$$\mathsf{T} \, ::= \, \mathbf{0} \, \mid \, x \, \mid \, a.\mathsf{T} \, \mid \, \mathsf{T} + \mathsf{T} \qquad (a \in \mathcal{A}, x \in \mathcal{V})$$

set of closed process terms \mathcal{T}^C : terms without variables

Semantics: labelled transition system for a term $p \in \mathcal{T}$ given by

$$1 \frac{}{a.p \xrightarrow{a} p} \qquad 2 \frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'} \qquad 3 \frac{q \xrightarrow{a} q'}{p+q \xrightarrow{a} q'}$$

BCCS: basic fragment of CCS

Syntax: set of process terms T generated by

$$\mathsf{T} ::= \mathbf{0} \mid x \mid a.\mathsf{T} \mid \mathsf{T} + \mathsf{T} \qquad (a \in \mathcal{A}, x \in \mathcal{V})$$

set of closed process terms \mathcal{T}^C : terms without variables

Semantics: labelled transition system for a term $p \in \mathcal{T}$ given by

$$1 \xrightarrow{a.p \xrightarrow{a} p} \qquad 2 \xrightarrow{p \xrightarrow{a} p'} \qquad 3 \xrightarrow{q \xrightarrow{a} q'} \\ p+q \xrightarrow{a} p' \qquad \qquad 3 \xrightarrow{p+q \xrightarrow{a} q'}$$

Bisimulation: largest symmetric relation \hookrightarrow such that

if
$$p \stackrel{a}{\longrightarrow} p'$$
 and $p \leftrightarrows q$, then $\exists q'$ s.t. $q \stackrel{a}{\longrightarrow} q'$ and $p' \leftrightarrows q'$

BCCS (2)

Construct the process algebra P:

Elements: \hookrightarrow is an equivalence relation:

 $\mathcal{T}/ \backsimeq \text{results in classes } [p] = \{q \mid p \backsimeq q\}$

BCCS (2)

Construct the process algebra P:

Elements: \hookrightarrow is an equivalence relation:

$$\mathcal{T}/ \backsimeq \text{results in classes } [p] = \{q \mid p \backsimeq q\}$$

Operators: \hookrightarrow is a congruence:

if
$$p \Leftrightarrow p'$$
, then $a.p \Leftrightarrow a.p'$ and if $p \Leftrightarrow p'$ and $q \Leftrightarrow q'$, then $p+q \Leftrightarrow p'+q'$

induces operations on the equivalence classes

$$\mathbf{0} = [\mathbf{0}], \qquad a.[p] = [a.p], \qquad [p] + [q] = [p+q]$$

${f P}$ has a well-known equational base ${\cal E}$:

$$\begin{array}{lll} \textbf{(A1)} & x+y & \approx y+x \\ \textbf{(A2)} & (x+y)+z \approx x+(y+z) \\ \textbf{(A3)} & x+x & \approx x \\ \textbf{(A4)} & x+\mathbf{0} & \approx x \end{array}$$

Theorem

 ${\cal E}$ is a (finite) equational base for ${f P}$

Soundness: if $p \approx q$ derivable, then $p \leftrightarrow q$

- \blacktriangleright find normal forms s and t such that $p\approx s$ and $q\approx t$
- $s \hookrightarrow t$ means that $[\![s]\!]_{\nu} = [\![t]\!]_{\nu}$ for all $\nu: \mathcal{V} \to \mathbf{P}$
- find a distinguishing valuation $*: \mathcal{V} \to \mathbf{P}$ for s, t s.t. if $s \not\approx t$ then $[\![s]\!]_* \neq [\![t]\!]_*$ for all s, t

- find normal forms s and t such that $p \approx s$ and $q \approx t$
 - so: if $s \hookrightarrow t$, then $s \approx t$ derivable
- $s \hookrightarrow t$ means that $[\![s]\!]_{\nu} = [\![t]\!]_{\nu}$ for all $\nu: \mathcal{V} \to \mathbf{P}$
- find a distinguishing valuation $*: \mathcal{V} \to \mathbf{P}$ for s, t s.t. if $s \not\approx t$ then $[\![s]\!]_* \neq [\![t]\!]_*$ for all s, t

- find normal forms s and t such that $p \approx s$ and $q \approx t$
 - so: if $s \hookrightarrow t$, then $s \approx t$ derivable
- $s \hookrightarrow t$ means that $[\![s]\!]_{\nu} = [\![t]\!]_{\nu}$ for all $\nu: \mathcal{V} \to \mathbf{P}$
- find a distinguishing valuation $*: \mathcal{V} \to \mathbf{P}$ for s, t s.t. if $s \not\approx t$ then $[\![s]\!]_* \neq [\![t]\!]_*$ for all s, t

Soundness: if $p \approx q$ derivable, then $p \not = q$ Completeness: if $p \not = q$, then $p \approx q$ derivable

- find normal forms s and t such that $p \approx s$ and $q \approx t$
 - so: if $s \hookrightarrow t$, then $s \approx t$ derivable
- $s \hookrightarrow t$ means that $[\![s]\!]_{\nu} = [\![t]\!]_{\nu}$ for all $\nu : \mathcal{V} \to \mathbf{P}$
 - so: if $[\![s]\!]_{\nu} = [\![t]\!]_{\nu}$ for all $\nu: \mathcal{V} \to \mathbf{P}$, then $s \approx t$ derivable
- find a distinguishing valuation $*: \mathcal{V} \to \mathbf{P}$ for s, t s.t. if $s \not\approx t$ then $[\![s]\!]_* \neq [\![t]\!]_*$ for all s, t

- find normal forms s and t such that $p \approx s$ and $q \approx t$
 - so: if $s \hookrightarrow t$, then $s \approx t$ derivable
- $s \hookrightarrow t$ means that $[\![s]\!]_{\nu} = [\![t]\!]_{\nu}$ for all $\nu : \mathcal{V} \to \mathbf{P}$
 - so: if $[\![s]\!]_{\nu}=[\![t]\!]_{\nu}$ for all $\nu:\mathcal{V}\to\mathbf{P}$, then spprox t derivable
- ▶ find a distinguishing valuation $*: \mathcal{V} \to \mathbf{P}$ for s, t s.t. if $s \not\approx t$ then $[\![s]\!]_* \neq [\![t]\!]_*$ for all s, t

For every process \boldsymbol{p} there exists a normal form \boldsymbol{s} such that

$$s = \sum_{i \in I} a_i \cdot s_i + \sum_{j \in J} x_j$$

Branching degree:

the number of outgoing transitions of a process

Example

- the branching degree of $a.\mathbf{0} + a.\mathbf{0} + b.\mathbf{0} + b.c.\mathbf{0}$ is 3
- the branching degree of

$$\xi_i = \sum \sum a^j . \mathbf{0} = a.\mathbf{0} + a.a.\mathbf{0} + \dots + a^i . \mathbf{0} + b.\mathbf{0} + \dots \text{ is } i \cdot |\mathcal{A}|$$

Let $w \geq 1$ and let $\lceil \cdot \rceil : \mathcal{V} \to (\mathbb{N} - \{0, 1\})$ be some injective function

$$\diamond_w(x) = a.\psi_{\lceil x \rceil \cdot w}$$
 with $\psi_i = \sum_{i=1}^i a^i.\mathbf{0}$

Let $w \geq 1$ and let $\lceil \cdot \rceil : \mathcal{V} \to (\mathbb{N} - \{0,1\})$ be some injective function

$$\diamond_w(x) = a.\psi_{\lceil x \rceil \cdot w} \text{ with } \psi_i = \sum_{j=1}^i a^i.\mathbf{0}$$

Example

Distinguishing a.s from x:

$$[a.s]_{\diamond_w} \xrightarrow{a} s$$

$$[\![x]\!]_{\diamond_w} = a.\psi_{\lceil x \rceil \cdot w} \stackrel{a}{\longrightarrow} \psi_{\lceil x \rceil \cdot w}$$
 (branching degree is $\lceil x \rceil \cdot w$)

 $\mathbf{P}_{\backslash} \text{: BCCS}$ extended with restriction

Syntax: set of process terms \mathcal{T}_{\setminus} generated by

$$T ::= \ldots \mid T \setminus L \qquad (L \subseteq A)$$

 \mathbf{P}_{\setminus} : BCCS extended with restriction

Syntax: set of process terms \mathcal{T}_{\setminus} generated by

$$T ::= \ldots \mid T \setminus L \qquad (L \subseteq A)$$

Semantics: labelled transition system for a term $p \in \mathcal{T}$ given by

$$4 \frac{p \xrightarrow{a} p' \quad a, \overline{a} \notin L}{p \setminus L \xrightarrow{a} p' \setminus L}$$

Example

if
$$p = (a.0 + b.0) \setminus \{a\}$$
, then $p \xrightarrow{a}$, but $p \xrightarrow{b} 0$.

\mathbf{P}_{\setminus} has an equational base \mathcal{E}_{\setminus} :

$$\begin{array}{lll} (\mathsf{RS1a}) & x \setminus \emptyset & \approx x \\ (\mathsf{RS1b}) & x \setminus \mathcal{A} & \approx \mathbf{0} \\ (\mathsf{RS2}) & \mathbf{0} \setminus L & \approx \mathbf{0} \\ (\mathsf{RS3}) & a.x \setminus L & \approx \left\{ \begin{array}{ll} \mathbf{0} & \text{if } a, \overline{a} \in L \\ a.(x \setminus L) & \text{if } a, \overline{a} \not \in L \end{array} \right. \\ (\mathsf{RS4}) & (x+y) \setminus L \approx x \setminus L + y \setminus L \\ (\mathsf{RS6}) & (x \setminus L) \setminus K \approx x \setminus (L \cup K) \end{array}$$

For every process \boldsymbol{p} there exists a normal form \boldsymbol{s} such that

$$s = \sum_{i \in I} a_i \cdot s_i + \sum_{j \in J} x_j \setminus L_j \qquad (L_j \subset \mathcal{A})$$

For every process \boldsymbol{p} there exists a normal form \boldsymbol{s} such that

$$s = \sum_{i \in I} a_i \cdot s_i + \sum_{j \in J} x_j \setminus L_j \qquad (L_j \subset \mathcal{A})$$

Example

Distinguish issues given $A = \{a, b\}$, $V = \{x, y\}$:

- $ightharpoonup a.s ext{ from } x \setminus \{b\}$
- $ightharpoonup x \setminus L$ from $y \setminus L$
- $ightharpoonup x \setminus \{a\} + x \setminus \{b\}$

For every process \boldsymbol{p} there exists a normal form \boldsymbol{s} such that

$$s = \sum_{i \in I} a_i \cdot s_i + \sum_{j \in J} x_j \setminus L_j \qquad (L_j \subset \mathcal{A})$$

Example

Distinguish issues given $A = \{a, b\}$, $V = \{x, y\}$:

- $ightharpoonup a.s \text{ from } x \setminus \{b\}$
- $ightharpoonup x \setminus L$ from $y \setminus L$
- $ightharpoonup x \setminus \{a\} + x \setminus \{b\}$

For every process \boldsymbol{p} there exists a normal form \boldsymbol{s} such that

$$s = \sum_{i \in I} a_i \cdot s_i + \sum_{j \in J} x_j \setminus L_j \qquad (L_j \subset \mathcal{A})$$

Example

Distinguish issues given $A = \{a, b\}$, $V = \{x, y\}$:

- $ightharpoonup a.s \text{ from } x \setminus \{b\}$
- $\blacktriangleright x \setminus L \text{ from } y \setminus L$
- $ightharpoonup x \setminus \{a\} + x \setminus \{b\}$

Let $w \geq 1$ and let $\lceil \cdot \rceil : \mathcal{V} \to (\mathbb{N} - \{0,1\})$ be some injective function

$$\diamond_w(x) = \sum_{a \in \mathcal{A}} a.\xi_{\lceil x \rceil \cdot w} \text{ with } \xi_i = \sum_{a \in \mathcal{A}} \sum_{j=1}^i a^i.\mathbf{0}$$

Let $w \geq 1$ and let $\lceil \cdot \rceil : \mathcal{V} \to (\mathbb{N} - \{0, 1\})$ be some injective function

$$\diamond_w(x) = \sum_{a \in \mathcal{A}} a.\xi_{\lceil x \rceil \cdot w} \text{ with } \xi_i = \sum_{a \in \mathcal{A}} \sum_{j=1}^i a^i.\mathbf{0}$$

Example

Distinguishing a.s from $x \setminus \{b\}$:

$$[a.s]_{\diamond_w} \xrightarrow{a} s$$

$$[x \setminus \{b\}]_{\diamond_w} \xrightarrow{a} \xi_{\lceil x \rceil \cdot w} \setminus \{b\}$$
 (branching degree is $\lceil x \rceil \cdot w \cdot |\mathcal{A} - \{b\}|$)

Let $w \geq 1$ and let $\lceil \cdot \rceil : \mathcal{V} \to (\mathbb{N} - \{0, 1\})$ be some injective function

$$\diamond_w(x) = \sum_{a \in \mathcal{A}} a.\xi_{\lceil x \rceil \cdot w} \text{ with } \xi_i = \sum_{a \in \mathcal{A}} \sum_{j=1}^i a^i.\mathbf{0}$$

Example

Distinguishing $x \setminus L$ from $y \setminus L$:

$$[\![x\setminus L]\!]_{\diamond_w} \stackrel{a}{\longrightarrow} \xi_{\lceil x \rceil \cdot w} \setminus L \qquad (a \not\in L, \mathsf{br.deg.} \lceil x \rceil \cdot w \cdot |\mathcal{A} - L|)$$

$$\llbracket y \setminus L \rrbracket_{\diamond_w} \xrightarrow{a} \xi_{\lceil y \rceil \cdot w} \setminus L \qquad (a \not\in L, \mathsf{br.deg.} \lceil y \rceil \cdot w \cdot |\mathcal{A} - L|)$$

Let $w \geq 1$ and let $\lceil \cdot \rceil : \mathcal{V} \to (\mathbb{N} - \{0, 1\})$ be some injective function

$$\diamond_w(x) = \sum_{a \in \mathcal{A}} a.\xi_{\lceil x \rceil \cdot w} \text{ with } \xi_i = \sum_{a \in \mathcal{A}} \sum_{j=1}^i a^i.\mathbf{0}$$

Example

Distinguishing $x \setminus \emptyset$ from $x \setminus \{a\} + x \setminus \{b\}$:

$$[\![x \setminus \emptyset]\!]_{\diamond_w} \xrightarrow{a} \xi_{\lceil x \rceil \cdot w}$$

$$[\![x\setminus\{a\}+x\setminus\{b\}]\!]_{\diamond_w} \stackrel{a}{\longrightarrow} \xi_{\lceil y\rceil\cdot w}\setminus\{b\} \text{ or }$$

$$\xrightarrow{b} \xi_{\lceil y \rceil \cdot w} \setminus \{a\}$$

 \mathbf{P}_{\parallel} : BCCS extended with relabelling

Syntax: set of process terms $T_{[]}$ generated by

$$\mathsf{T} \,::=\, \dots \,\mid\, \mathsf{T}[f] \qquad (f:\mathcal{A} \to \mathcal{A})$$

 \mathbf{P}_{\parallel} : BCCS extended with relabelling

Syntax: set of process terms $T_{[]}$ generated by

$$T ::= \ldots \mid T[f] \qquad (f : A \rightarrow A)$$

Semantics: labelled transition system for a term $p \in \mathcal{T}$ given by

$$5 \xrightarrow{p \xrightarrow{a} p'} p[f] \xrightarrow{f(a)} p'[f]$$

Example

if
$$p=(a.\mathbf{0}+b.c.\mathbf{0})[b\mapsto a]$$
, then $p\overset{a}{\longrightarrow}\mathbf{0}$ and $p\overset{a}{\longrightarrow}c.\mathbf{0}$.

$\mathbf{P}_{[]}$ has an equational base $\mathcal{E}_{[]}\text{:}$

$$\begin{array}{ll} \text{(RL1)} & x[Id] & \approx x \\ \text{(RL2)} & \mathbf{0}[f] & \approx \mathbf{0} \\ \text{(RL3)} & (a.x)[f] & \approx f(a).(x[f]) \\ \text{(RL4)} & (x+y)[f] \approx x[f] + y[f] \\ \\ \text{(RL6)} & (x[f])[g] & \approx x[g \circ f] \\ \end{array}$$

For every process \boldsymbol{p} there exists a normal form \boldsymbol{s} such that

$$s = \sum_{i \in I} a_i \cdot s_i + \sum_{j \in J} x_j [f_j] \qquad (f_j : \mathcal{A} \to \mathcal{A})$$

For every process \boldsymbol{p} there exists a normal form \boldsymbol{s} such that

$$s = \sum_{i \in I} a_i \cdot s_i + \sum_{j \in J} x_j [f_j] \qquad (f_j : \mathcal{A} \to \mathcal{A})$$

Example

Distinguish issues given $\mathcal{A} = \{a,b\}$, $\mathcal{V} = \{x,y\}$:

- a.s from $x[b \mapsto a]$
- $ightharpoonup x[Id] \text{ from } x[a \mapsto b, b \mapsto a]$

For every process \boldsymbol{p} there exists a normal form \boldsymbol{s} such that

$$s = \sum_{i \in I} a_i \cdot s_i + \sum_{j \in J} x_j [f_j] \qquad (f_j : \mathcal{A} \to \mathcal{A})$$

Example

Distinguish issues given $\mathcal{A} = \{a,b\}$, $\mathcal{V} = \{x,y\}$:

- a.s from $x[b \mapsto a]$
- x[Id] from $x[a \mapsto b, b \mapsto a]$

Let $\lfloor \cdot \rfloor: \mathcal{A} \to \mathbb{P}$ be some injective function, let $w \in \mathbb{P}$ larger than any number in the range of $\lfloor \cdot \rfloor$, and let $\lceil \cdot \rceil: \mathcal{V} \to \{m \in \mathbb{P} \mid m > w\}$ be another injective function

$$\diamond_w(x) = a.\zeta_{\lceil x \rceil, w} \text{ with } \zeta_{i, w} = a.\mathbf{0} + \sum_{b \in A} \sum_{i=1}^w b^{i \cdot \lfloor b \rfloor^j}.\mathbf{0}$$

Let $\lfloor \cdot \rfloor : \mathcal{A} \to \mathbb{P}$ be some injective function, let $w \in \mathbb{P}$ larger than any number in the range of $\lfloor \cdot \rfloor$, and let $\lceil \cdot \rceil : \mathcal{V} \to \{m \in \mathbb{P} \mid m > w\}$ be another injective function

$$\diamond_w(x) = a.\zeta_{\lceil x \rceil, w} \text{ with } \zeta_{i, w} = a.\mathbf{0} + \sum_{b \in \mathcal{A}} \sum_{j=1}^w b^{i \cdot \lfloor b \rfloor^j}.\mathbf{0}$$

Example

Distinguishing a.s from $x[b \mapsto a]$:

$$[\![a.s]\!]_{\diamondsuit_w} \stackrel{a}{-\!\!\!-\!\!\!-} s$$

$$\llbracket x[b \mapsto a] \rrbracket_{\diamond_w} \xrightarrow{a} \zeta_{\lceil x \rceil, w}[b \mapsto a]$$

(branching degree $1 + w \cdot |\mathcal{A}|$)

Let $\lfloor \cdot \rfloor : \mathcal{A} \to \mathbb{P}$ be some injective function, let $w \in \mathbb{P}$ larger than any number in the range of $\lfloor \cdot \rfloor$, and let $\lceil \cdot \rceil : \mathcal{V} \to \{m \in \mathbb{P} \mid m > w\}$ be another injective function

$$\diamond_w(x) = a.\zeta_{\lceil x \rceil, w} \text{ with } \zeta_{i,w} = a.\mathbf{0} + \sum_{b \in \mathcal{A}} \sum_{j=1}^{w} b^{i \cdot \lfloor b \rfloor^j}.\mathbf{0}$$

Example

Distinguishing x[Id] from $x[a \mapsto b, b \mapsto a]$:

$$[\![x[Id]]\!]_{\diamond_w} \stackrel{a}{\longrightarrow} \zeta_{\lceil x \rceil, w}$$

$$\llbracket x[a \mapsto b, b \mapsto a] \rrbracket_{\diamond_w} \xrightarrow{b} \zeta_{\lceil y \rceil \cdot w} [a \mapsto b, b \mapsto a]$$

 $\mathbf{P}_{\backslash,[]}$ has an equational base $\mathcal{E}_{\backslash,[]}$ combining \mathcal{E}_{\backslash} , $\mathcal{E}_{[]}$, and:

$$\begin{array}{ll} (\mathsf{RR1}) & x[f] \setminus L & \approx (x \setminus f^{-1}(L))[f] \\ (\mathsf{RR2}) & (x \setminus L)[f] \approx (x \setminus L)[g] & \text{if } f \upharpoonright (\mathcal{A} - L) = g \upharpoonright (\mathcal{A} - L) \end{array}$$

Normal Forms

For every process \boldsymbol{p} there exists a normal form \boldsymbol{s} such that

$$s = \sum_{i \in I} a_i \cdot s_i + \sum_{j \in I} (x_j \setminus L_j)[f_j] \qquad (L_j \subset \mathcal{A}, f_j : \mathcal{A} \to \mathcal{A})$$

Let $\lfloor \cdot \rfloor: \mathcal{A} \to \mathbb{P}$ be some injective function, let $w \in \mathbb{P}$ be larger than any number in the range of $\lfloor \cdot \rfloor$, and let $\lceil \cdot \rceil: \mathcal{V} \to \{m \in \mathbb{P} \mid m > w\}$ be another injective function

$$\diamond_w(x) = \sum_{a \in \mathcal{A}} a.\chi_{\lceil x \rceil, w} \text{ with } \chi_{i, w} = \sum_{a \in \mathcal{A}} \left(a.\mathbf{0} + \sum_{j=1}^w a^{i \cdot \lfloor a \rfloor^j}.\mathbf{0} \right)$$

Syntax

set of process terms $\mathcal{T}^{\scriptscriptstyle \parallel}$ generated by

$$\mathsf{T} ::= \ldots \mid \mathsf{T} \, \| \, \mathsf{T} \mid \mathsf{T} \, \| \, \mathsf{T}$$

Standard axioms

Syntax

set of process terms $\mathcal{T}^{\scriptscriptstyle \parallel}$ generated by

$$\mathsf{T} \, ::= \, \ldots \, \mid \, \mathsf{T} \, \lVert \, \mathsf{T} \, \mid \, \mathsf{T} \, \lVert \, \mathsf{T} \, \rvert \, \mathsf{T}$$

Distributive axioms

Due to absence of communication:

(RS5)
$$(x \parallel y) \setminus L \approx x \setminus L \parallel y \setminus L$$

(RL5)
$$(x \parallel y)[f] \approx x[f] \parallel y[f]$$

For every process \boldsymbol{p} there exists a normal form \boldsymbol{s} such that

$$s = \sum_{i \in I} a_i \cdot s_i + \sum_{j \in J} (x_j \setminus L_j)[f_j] \parallel s_j \qquad (L_j \subset \mathcal{A}, f_j : \mathcal{A} \to \mathcal{A})$$

Previously given proofs still work!

Example

$$[\![x \setminus L \parallel s]\!]_{\diamond_w} \stackrel{a}{\longrightarrow} (\xi_{\lceil x \rceil \cdot w} \setminus L) \parallel s$$

Results

- Proved completeness of finite equational bases for fragments
 - · with restriction
 - with relabelling
 - · with combination of restriction and relabelling
 - with and without interleaving
- While recursion has been left out, the addition changes nothing

Future work

Non-trivial addition of communication merge remains!

Questions?

