A Context-Free Process as a Pushdown Automaton

Paul van Tilburg

(joint work with Jos Baeten and Pieter Cuijpers)

Department of Mathematics and Computer Science
Eindhoven University of Technology

TCS seminar
Vrije Universiteit, Amsterdam / June 20, 2008

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Introduction

Project MoCAP

» Models of Computation: Automata and Processes

Automata + Interaction = Concurrency

Technische Universiteit
/ department of mathematics and computer science e Eindhoven
University of Technology

Introduction

Project MoCAP

» Models of Computation: Automata and Processes
Automata + Interaction = Concurrency

» Separate development
» Integration
» Study similarities and differences

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Regular Language

Right-linear grammar (Finite) transition system
Generates a regular language Accepts a regular language

X —aY | b

Y —¢

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Right-linear grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Right-linear grammar Transition system
Generates a context-free language

X —aXY | b
Y — ¢

Theorem

For every context-free language there exists a pushdown automaton that
accepts it.

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Right-linear grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Pushdown automaton

g,e — X$ a,X — XY Stack
byX — ¢
c,Y — ¢ Eﬂ
e,$—e

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Right-linear grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Pushdown automaton

g,e — X$ a,X — XY Stack
byX — ¢
c,Y — ¢ ﬂ
e,$—e

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Right-linear grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Pushdown automaton

g,e — X$ a,X — XY Stack
byX — ¢
c,Y — ¢ ﬂ
e,$—e

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Right-linear grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Pushdown automaton

g,e — X$ a,X — XY Stack
byX — ¢
c,Y — ¢ ﬂ
e,$—e

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Right-linear grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Pushdown automaton

g,e — X$ a,X — XY Stack
byX — ¢
c,Y — ¢ Eﬂ
e,$—e

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Language

Right-linear grammar Transition system
Generates a context-free language

X —aXY | b

Y — ¢

Pushdown automaton

g,e — X$ a,X — XY Stack
byX — ¢
c,Y — ¢
e,$—e

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Processes and Recursive Specifications

Right-linear grammar
Generates a context-free language

X —aXY | b

Y —e¢

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Processes and Recursive Specifications

Right-linear grammar
Generates a context-free language

X —aXY | b

Y — ¢

/ department of mathematics and computer science

Recursive specification over BPA
Specifies a context-free process
X=a - (X-Y)+b
Y=c
Restrict to:
finite and guarded specifications

Technische Universiteit
Eindhoven
University of Technology

Processes and Recursive Specifications

Right-linear grammar Recursive specification over BPA
Generates a context-free language specifies a context-free process
X —aXY | b X=a (X-Y)+b
Y — ¢ Y=c
Restrict to:

finite and guarded specifications
Oand1

» Regular expressions use 0 (deadlock) and 1 (final state)
> Not done in grammars in automata theory
» Add it to recursive specifications

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Processes and Recursive Specifications

Right-linear grammar Recursive specification over BPA
Generates a context-free language specifies a context-free process
X —aXY | b X=a(X-Y)+0b1
Y — ¢ Y =cl
Restrict to:

finite and guarded specifications
Oand1

» Regular expressions use 0 (deadlock) and 1 (final state)
> Not done in grammars in automata theory
» Add it to recursive specifications

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Main Theorem

Process theory enables us to...

» Model the data (a stack) as a process
» Make communication explicit
» Use bisimulation equivalences to preserve branching structure

Technische Universiteit
/ department of mathematics and computer science e Eindhoven
University of Technology

Main Theorem

Process theory enables us to...

» Model the data (a stack) as a process
» Make communication explicit

» Use bisimulation equivalences to preserve branching structure

Theorem

Every context-free process is equivalent to a regular process
communicating with a stack.

Technische Universiteit
/ department of mathematics and computer science Eindhoven

University of Technology

Specifications
Infinite recursive specification (infinite data set)

Sa — Z 7de Sdo’ = !d.Sg + Z ?e'Sedo

deD eeD

Technische Universiteit
/ department of mathematics and computer science e Eindhoven
University of Technology

Specifications
Infinite recursive specification (infinite data set)

S& — Z 7de Sdo’ = !d.Sg + Z ?e'Sedo

deD eeD

Finite recursive specification over BPA

S=T-8 T:Z?d.Td Ty=1d+T Ty
deD

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Specifications
Infinite recursive specification (infinite data set)

S& — Z 7de Sdo’ = !d.Sg + Z ?e'Sedo

deD eeD

Finite recursive specification over BPA

S=T-8 T:E}dn Ty=1d+T Ty
deD

Even smaller specification (over BPAg 1)

S=1+)Y ?d(S-1d.9)

deD

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Specifications
Infinite recursive specification (infinite data set)

S& — Z 7de Sdo’ = !d.Sg + Z ?e'Sedo

deD eeD

Finite recursive specification over BPA

S=T-8 T:E}dn Ty=1d+T Ty
deD

Even smaller specification (over BPAg 1)

S=1+)Y ?d(S-1d.9)
deD
Shorthand
S y(P||S-1dy.S-... d,.S) =

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Pushdown Automaton

Context-free process

X=a(XY)+b1
Y =cl

Translated

X = a.Push(XY) + b.Push(1)

Y = c.Push(1)

Push(1) = Ctrl
Push(£Y) = Y. Push(¢)

Ctrl= Y V.V +1
Vey

S=1+4) ?V.S§-1V.S
vev

Technische Universiteit
/ department of mathematics and computer science Eindhoven

University of Technology

Pushdown Automaton

Context-free process Transition system

X=a(XY)+b1
Y =cl

Translated
X = a.Push(XY) + b.Push(1)

Y = c.Push(1)
Push(1) = Ctrl
Push(¢Y') =Y. Push(¢)
Ctrl= Y V.V +1
vey
S=1+4) ?V.S§-1V.S

vev

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Pushdown Automaton

Context-free process

X=a(XY)+b1
Y=cl
Translated
X = a.Push(XY) + b.Push(1)

Y = c.Push(1)

Push(1) = Ctrl
Push(£Y) = !Y.Push(¢)
Ctrl= Y ?7V.V+1
Vvey
S=1+> ?W.8-1V.S
Vvey

/ department of mathematics and computer science

...modulo rooted br. bisim.

X0) b
Ey)p——
X(s‘/_m\ b

Technische Universiteit
Eindhoven
University of Technology

Context-Free Processes with 1-summands

Context-free process Transition system

X=a(X Y)+0b1,
Y=cl+1

I
Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Processes with 1-summands

Context-free process Transition system

X=a(X Y)+0b1,
Y=cl+1

I
Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Processes with 1-summands

Context-free process Transition system

X=a(X Y)+0b1,
Y=cl+1

I
Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Processes with 1-summands

Context-free process Transition system

X=a(X Y)+0b1,
Y=cl+1

I
Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Processes with 1-summands

Context-free process Transition system

X=a(X Y)+0b1,
Y=cl+1

Translation adaptation

S=1+)» ?V.8-V.S
Vey

I
Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Processes with 1-summands

Context-free process

X=a(X Y)+0b1,
Y=cl+1

Translation adaptation

S=1+ > VS-S
Vey-y+i

+) .S (1+1V.S)
Vey+i

foryt™* CVy

/ department of mathematics and computer science

Transition system

|
Technische Universiteit
Eindhoven
University of Technology

Context-Free Process Results

Unbounded branching

» Solution modulo contrasimulation
» Using partially forgetful stack, the prototypical context-free process

Without 1-summands

» Solution modulo rooted branching bisimulation
» Using normal stack, the prototypical context-free process (for BPA)

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Context-Free Process Results

Unbounded branching

» Solution modulo contrasimulation
» Using partially forgetful stack, the prototypical context-free process

Without 1-summands

» Solution modulo rooted branching bisimulation
» Using normal stack, the prototypical context-free process (for BPA)

Bounded branching

» Solution modulo rooted branching bisimulation!
» Using the partially forgetful stack

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Basic Parallel Processes

Recursive specification over BPP Transition system

X=aX|Y)+0b1
Y=cl

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Basic Parallel Processes

Recursive specification over BPP Transition system

X=aX|Y)+0b1
Y=cl

The bag

B=1+) 7d.(B] d1)
deD

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Basic Parallel Processes

Recursive specification over BPP Transition system

X=a(X|Y)+b1

Y=cl
The bag
B=1+) 7d.(B] d1)
deD
Theorem

Every basic parallel process is equivalent to a regular process
communicating with a bag.

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Parallel Pushdown Automaton

Basic parallel process Translated
X=a(X]Y)+b1 X = a.Push(XY) + b.Push(0)
Y=cil Y = c.Push(0)

Push(()) = Ctrl
Push(X¢) = !, X.Push(¢)

Ctrl = Y 2,V.(V + LV.Ctrl)
vey

B=1+ > 2V(B] V1)
Vey—ytt

+ Y V(B (LV1+1)
Veytt

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Parallel Pushdown Automaton

Basic parallel process Translated
X=a(X]Y)+b1 X = a.Push(XY) + b.Push(0)
Y=cl1l+41 Y = c.Push(0) + 1

Push(()) = Ctrl
Push(X¢) = !, X.Push(¢)

Ctrl = Y 2,V.(V +LV.Ctxl)
vey

B=1+ > 2V(B] V1)
Vey—ytt

+ Y V(B (LV1+1)
Veyti

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Basic Parallel Process Results

All cases

» Solution modulo rooted branching bisimulation
» Using partially forgetful bag, the prototypical basic parallel process

Remark
Using 1 made the solution easier

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Concluding Remarks

Proved Theorems

Made communication explicit
Introduced 0 and 1, dealt with complications

The (partially forgetful) stack is the prototypical context-free
process

The (partially forgetful) bag is the prototypical basic parallel process

\{

v

v

v

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Concluding Remarks

Proved Theorems

\{

Made communication explicit

v

Introduced 0 and 1, dealt with complications

v

The (partially forgetful) stack is the prototypical context-free
process

The (partially forgetful) bag is the prototypical basic parallel process

v

Future work

» Reverse case, maybe with 1?7
» Queues?

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

Questions?

Technische Universiteit
/ department of mathematics and computer science Eindhoven
University of Technology

