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Introduction

Automata & Formal Language theory

◮ Parsing, compilers

◮ Computability, complexity

◮ Back in the days: different model and real-world computers

◮ Fixed input string

◮ Input separated from output

◮ Batch process

◮ Abstracts from interaction

◮ Nowadays: one click as input

◮ Computers are reactive systems

◮ Interaction much more important
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Introduction (2)

Process theory

◮ Split off, separate development

◮ Focuses on interaction

◮ Deals with concurrent setting

Integration

◮ Attempt reveals differences and similarities

◮ Use analogies to make the integration explicit

◮ Increase understanding of both theories
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Introduction (2)

Process theory

◮ Split off, separate development

◮ Focuses on interaction

◮ Deals with concurrent setting

Integration

◮ Attempt reveals differences and similarities

◮ Use analogies to make the integration explicit

◮ Increase understanding of both theories

◮ Practical side: merge in undergraduate curriculum course
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Overview

Correspondence

◮ Finite automata, regular languages and processes [FSEN 2009]
◮ Pushdown automata, processes and context-free languages

• Pushdown automaton as regular process communicating
with a stack [CONCUR 2008]

◮ Basic parallel processes
• Parallel pushdown automaton as a regular process communicating
with a bag [EXPRESS 2008]

◮ Computable processes
• Turing machine as a regular process communicating
with two stacks [FSEN 2009]
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Finite Automaton

Finite ControlInput yes/no

◮ Corresponds to regular language

◮ No memory!

◮ Two equivalences: language equivalence and isomorphism
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Grammars and Recursive Specifications
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S = aT + aW

T = aU + bW

U = bV + bR

V = 0

W = aR

R = bW + 1

◮ From finite automaton to recursive specification
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From Recursive Specification to Automaton

1 ↓ ax
a

−→ x

x
a

−→ x′

x + y
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−→ x′
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−→ y′

x + y
a

−→ y′

x ↓

x + y ↓

y ↓

x + y ↓

t
a

−→ x P = t

P
a

−→ x

t ↓ P = t

P ↓

◮ Structural Operational Semantics [Plotkin, 1981]
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Similarities with Process Algebra

◮ Finite automaton = finite labelled transition system

◮ Grammar = recursive specification over 0,1, a_,+, · (TSPτ )

◮ Regular expression = closed term over 0,1, a_,+, ·, ∗
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Similarities with Process Algebra

◮ Finite automaton = finite labelled transition system

◮ Grammar = recursive specification over 0,1, a_,+, · (TSPτ )

◮ Regular expression = closed term over 0,1, a_,+, ·, ∗

Theory of Sequential Processes

◮ 0 inaction, unsuccessful termination, deadlock

◮ 1 empty process, skip, successful termination

◮ a_ action prefix

◮ + alternative composition, choice

◮ · sequential composition

[Baeten, Basten, Reniers, Process Algebra, Cambridge UP, 2009]
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Bisimulation

◮ In process theory a difference equivalent is used

◮ Expose interaction and preserve choices

Definition
We call the largest symmetric relation R such that

◮ if p
a

−→ p′ then there exists q′ such that q
a

−→ q′ and p′ R q′

◮ if q
a

−→ q′ then there exists p′ such that p
a

−→ p′ and p′ R q′

◮ if p↓ implies q↓ and vice versa

the bisimulation relation

Notes

◮ If (p, q) ∈R, then p and q are bisimilar (notation: p ↔ q)

◮ Prefer branching bisimulation
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Regular Language & Process

Definition
A regular language is a language equivalence class of a finite
(non-deterministic) automaton
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Regular Language & Process

Definition
A regular language is a language equivalence class of a finite
(non-deterministic) automaton

Definition
A regular process is a bisimulation equivalence class of a finite,

non-deterministic automaton

◮ A regular process is given by a recursive specification over the

signature 0,1, a_,+ (BSPτ )

◮ Processes given by deterministic automata, and by regular

expressions, form a subclass

[Baeten, Corradini, Grabmayer, JACM 2007]
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Pushdown Automata and Processes

a, ∅ → Y ∅

b, Y → ε

a, Y → Y Y

c, Y → ε

X = aX · Y + b1

Y = c1

X XY XY 2 XY 3

1 Y Y 2 Y 3

a a a

b b b

cc

a

c
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The Stack

S = 1 +
∑

d∈D

i?d.S · o!d.S

i?0

o!0 i?1

o!1

i?0
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Pushdown Correspondence

Pushdown automaton

Context-free language

Context-free grammar
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Pushdown Correspondence

Pushdown automaton

Pushdown process

“Context-free” specification

Pushdown process↔b
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Problem with Pop-choice

◮ Context-free languages correspond to language accepted by PDAs

◮ Not the case with bisimulation! [Moller, 1996]

◮ Fix: do not allow for pop-choice (to ensure existence specification)

ε, c, ε

Y, c, Y

Y, b, ε Y, b, ε

ε, a, Y

Y, a, Y Y

c c c c

bbb b

a a a

bbb

a

b
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Problem with 1-summands
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Problem with 1-summands

X XY XY 2 XY 3

1 Y Y 2 Y 3

a a a

b b b b

ccc

c c

c

a

c

X = aX · Y + b1

Y = 1 + c1

◮ Recursive specifications over TSPτ can lead to unbounded

branching

◮ Fix: transparency-restricted Greibach normal form
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Pushdown Correspondence Theorem

Theorem
A process is a pop choice-free pushdown process iff it is definable by a
transparency-restricted recursive specification [FSEN, 2009]
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Pushdown Correspondence Theorem

Theorem
A process is a pop choice-free pushdown process iff it is definable by a
transparency-restricted recursive specification [FSEN, 2009]

Notes

◮ Decidability of bisimulation shown for this class!

◮ Is it the right correspondence?
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Conclusion

◮ Integration of automata theory and process theory is beneficial for

both theories

◮ Correspondence finite automata, regular languages and processes

◮ Correspondence pushdown automata, context-free language,

pushdown processes

◮ This integrated theory can be a first-year course in any academic

bachelor program in computer science (or related subjects)
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Thank you!

Questions?


