
Where innovation starts

Models of Computation:
Automata and Processes

Paul van Tilburg

(joint work with Jos Baeten, Bas Luttik and Pieter Cuijpers)

YR-CONCUR 2009,
September 5, 2009



2/18

/department of mathematics and computer science

Introduction

Automata & Formal Language theory

◮ Parsing, compilers

◮ Computability, complexity



2/18

/department of mathematics and computer science

Introduction

Automata & Formal Language theory

◮ Parsing, compilers

◮ Computability, complexity

◮ Back in the days: different model and real-world computers

◮ Fixed input string

◮ Input separated from output

◮ Batch process

◮ Abstracts from interaction



2/18

/department of mathematics and computer science

Introduction

Automata & Formal Language theory

◮ Parsing, compilers

◮ Computability, complexity

◮ Back in the days: different model and real-world computers

◮ Fixed input string

◮ Input separated from output

◮ Batch process

◮ Abstracts from interaction

◮ Nowadays: one click as input

◮ Computers are reactive systems

◮ Interaction much more important



3/18

/department of mathematics and computer science

Introduction (2)

Process theory

◮ Split off, separate development

◮ Focuses on interaction

◮ Deals with concurrent setting

Integration

◮ Attempt reveals differences and similarities

◮ Use analogies to make the integration explicit

◮ Increase understanding of both theories



3/18

/department of mathematics and computer science

Introduction (2)

Process theory

◮ Split off, separate development

◮ Focuses on interaction

◮ Deals with concurrent setting

Integration

◮ Attempt reveals differences and similarities

◮ Use analogies to make the integration explicit

◮ Increase understanding of both theories

◮ Practical side: merge in undergraduate curriculum course



4/18

/department of mathematics and computer science

Overview

Correspondence

◮ Finite automata, regular languages and processes [FSEN 2009]
◮ Pushdown automata, processes and context-free languages

• Pushdown automaton as regular process communicating
with a stack [CONCUR 2008]

◮ Basic parallel processes
• Parallel pushdown automaton as a regular process communicating
with a bag [EXPRESS 2008]

◮ Computable processes
• Turing machine as a regular process communicating
with two stacks [FSEN 2009]



4/18

/department of mathematics and computer science

Overview

Correspondence

◮ Finite automata, regular languages and processes [FSEN 2009]
◮ Pushdown automata, processes and context-free languages

• Pushdown automaton as regular process communicating
with a stack [CONCUR 2008]

◮ Basic parallel processes
• Parallel pushdown automaton as a regular process communicating
with a bag [EXPRESS 2008]

◮ Computable processes
• Turing machine as a regular process communicating
with two stacks [FSEN 2009]

Other questions

◮ Relative expressivity

◮ Decidability



4/18

/department of mathematics and computer science

Overview

Correspondence

◮ Finite automata, regular languages and processes [FSEN 2009]
◮ Pushdown automata, processes and context-free languages

• Pushdown automaton as regular process communicating
with a stack [CONCUR 2008]

◮ Basic parallel processes
• Parallel pushdown automaton as a regular process communicating
with a bag [EXPRESS 2008]

◮ Computable processes
• Turing machine as a regular process communicating
with two stacks [FSEN 2009]

Other questions

◮ Relative expressivity

◮ Decidability



5/18

/department of mathematics and computer science

Finite Automaton

Finite ControlInput yes/no

◮ Corresponds to regular language

◮ No memory!

◮ Two equivalences: language equivalence and isomorphism



6/18

/department of mathematics and computer science

Grammars and Recursive Specifications

S

T U V

W R

a

a

b

b

b
a

a

b



6/18

/department of mathematics and computer science

Grammars and Recursive Specifications

S

T U V

W R

a

a

b

b

b
a

a

b

S = aT + aW

T = aU + bW

U = bV + bR

V = 0

W = aR

R = bW + 1

◮ From finite automaton to recursive specification



7/18

/department of mathematics and computer science

From Recursive Specification to Automaton

1 ↓ ax
a

−→ x

x
a

−→ x′

x + y
a

−→ x′

y
a

−→ y′

x + y
a

−→ y′

x ↓

x + y ↓

y ↓

x + y ↓

t
a

−→ x P = t

P
a

−→ x

t ↓ P = t

P ↓

◮ Structural Operational Semantics [Plotkin, 1981]



8/18

/department of mathematics and computer science

Similarities with Process Algebra

◮ Finite automaton = finite labelled transition system

◮ Grammar = recursive specification over 0,1, a_,+, · (TSPτ )

◮ Regular expression = closed term over 0,1, a_,+, ·, ∗



8/18

/department of mathematics and computer science

Similarities with Process Algebra

◮ Finite automaton = finite labelled transition system

◮ Grammar = recursive specification over 0,1, a_,+, · (TSPτ )

◮ Regular expression = closed term over 0,1, a_,+, ·, ∗

Theory of Sequential Processes

◮ 0 inaction, unsuccessful termination, deadlock

◮ 1 empty process, skip, successful termination

◮ a_ action prefix

◮ + alternative composition, choice

◮ · sequential composition

[Baeten, Basten, Reniers, Process Algebra, Cambridge UP, 2009]



9/18

/department of mathematics and computer science

Bisimulation

◮ In process theory a difference equivalent is used

◮ Expose interaction and preserve choices

Definition
We call the largest symmetric relation R such that

◮ if p
a

−→ p′ then there exists q′ such that q
a

−→ q′ and p′ R q′

◮ if q
a

−→ q′ then there exists p′ such that p
a

−→ p′ and p′ R q′

◮ if p↓ implies q↓ and vice versa

the bisimulation relation

Notes

◮ If (p, q) ∈R, then p and q are bisimilar (notation: p ↔ q)

◮ Prefer branching bisimulation



10/18

/department of mathematics and computer science

Regular Language & Process

Definition
A regular language is a language equivalence class of a finite
(non-deterministic) automaton



10/18

/department of mathematics and computer science

Regular Language & Process

Definition
A regular language is a language equivalence class of a finite
(non-deterministic) automaton

Definition
A regular process is a bisimulation equivalence class of a finite,

non-deterministic automaton



10/18

/department of mathematics and computer science

Regular Language & Process

Definition
A regular language is a language equivalence class of a finite
(non-deterministic) automaton

Definition
A regular process is a bisimulation equivalence class of a finite,

non-deterministic automaton

◮ A regular process is given by a recursive specification over the

signature 0,1, a_,+ (BSPτ )



10/18

/department of mathematics and computer science

Regular Language & Process

Definition
A regular language is a language equivalence class of a finite
(non-deterministic) automaton

Definition
A regular process is a bisimulation equivalence class of a finite,

non-deterministic automaton

◮ A regular process is given by a recursive specification over the

signature 0,1, a_,+ (BSPτ )

◮ Processes given by deterministic automata, and by regular

expressions, form a subclass

[Baeten, Corradini, Grabmayer, JACM 2007]



11/18

/department of mathematics and computer science

Pushdown Automata and Processes

a, ∅ → Y ∅

b, Y → ε

a, Y → Y Y

c, Y → ε



11/18

/department of mathematics and computer science

Pushdown Automata and Processes

a, ∅ → Y ∅

b, Y → ε

a, Y → Y Y

c, Y → ε

X XY XY 2 XY 3

1 Y Y 2 Y 3

a a a

b b b

cc

a

c



11/18

/department of mathematics and computer science

Pushdown Automata and Processes

a, ∅ → Y ∅

b, Y → ε

a, Y → Y Y

c, Y → ε

X = aX · Y + b1

Y = c1

X XY XY 2 XY 3

1 Y Y 2 Y 3

a a a

b b b

cc

a

c



12/18

/department of mathematics and computer science

The Stack

S = 1 +
∑

d∈D

i?d.S · o!d.S

i?0

o!0 i?1

o!1

i?0

o!0 i?1

o!1 i?0

o!0 i?1

o!1



13/18

/department of mathematics and computer science

Pushdown Correspondence

Pushdown automaton

Context-free language

Context-free grammar



13/18

/department of mathematics and computer science

Pushdown Correspondence

Pushdown automaton

Pushdown process

“Context-free” specification

Pushdown process↔b



14/18

/department of mathematics and computer science

Problem with Pop-choice

◮ Context-free languages correspond to language accepted by PDAs

◮ Not the case with bisimulation! [Moller, 1996]

◮ Fix: do not allow for pop-choice (to ensure existence specification)

ε, c, ε

Y, c, Y

Y, b, ε Y, b, ε

ε, a, Y

Y, a, Y Y

c c c c

bbb b

a a a

bbb

a

b



15/18

/department of mathematics and computer science

Problem with 1-summands

X XY XY 2 XY 3

1 Y Y 2 Y 3

a a a

b b b b

ccc

c c

c

a

c

X = aX · Y + b1

Y = 1 + c1



15/18

/department of mathematics and computer science

Problem with 1-summands

X XY XY 2 XY 3

1 Y Y 2 Y 3

a a a

b b b b

ccc

c c

c

a

c

X = aX · Y + b1

Y = 1 + c1

◮ Recursive specifications over TSPτ can lead to unbounded

branching

◮ Fix: transparency-restricted Greibach normal form



16/18

/department of mathematics and computer science

Pushdown Correspondence Theorem

Theorem
A process is a pop choice-free pushdown process iff it is definable by a
transparency-restricted recursive specification [FSEN, 2009]



16/18

/department of mathematics and computer science

Pushdown Correspondence Theorem

Theorem
A process is a pop choice-free pushdown process iff it is definable by a
transparency-restricted recursive specification [FSEN, 2009]

Notes

◮ Decidability of bisimulation shown for this class!

◮ Is it the right correspondence?



17/18

/department of mathematics and computer science

Conclusion

◮ Integration of automata theory and process theory is beneficial for

both theories

◮ Correspondence finite automata, regular languages and processes

◮ Correspondence pushdown automata, context-free language,

pushdown processes

◮ This integrated theory can be a first-year course in any academic

bachelor program in computer science (or related subjects)



18/18

/department of mathematics and computer science

Thank you!

Questions?


