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Turing Machines

A(utomatic)-machines (later: Turing machines)

◮ Defined by Alan Turing in 1936

◮ Infinite memory in the form of a tape

◮ Head that reads/writes one symbol at a time
◮ Finite control of the head

• reading and writing
• moving
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Turing Machines (2)

Universal Turing machines

◮ Church-Turing thesis:

“Everything computable is computable by a Turing machine”
◮ Models a computation/function

• The TM converts input on the tape to output

◮ Model is also close to a computer of the ’70s (program, CPU, RAM)
• Input available at the start
• Calculation is performed
• Output generated at the end

◮ Criticism possible on suitability as a theoretical model of a

modern-day computer

◮ Still, the TM entered the books as theoretical model

◮ (However, still works well for models of computations!)
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Reactive Systems

“A Turing machine cannot fly a plane, but a real computer can!”

Properties

◮ Non-termination

◮ Interaction (with the environment)

Examples

◮ Cloud computing

◮ Mobile phones

◮ . . .

◮ Processes of an operating system

◮ Objects in a virtual machine
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Concurrency Theory

◮ Started with Petrinets in the ’60s

◮ Given boost by Milner in the ’70s
◮ Goals for concurrency theory according to Milner:

• Study concurrency and interaction in isolation
• Only a single combiner for combining processes

◮ This work is done within the MoCAP project
• Consider definitions and results from automata theory
• . . . using a process-theoretic point of view
• Obtain stronger results using concurrency theory
• For example by considering (branching) bisimulation

◮ Side-goal: the design and teaching of a new course
• In a theoretical course the model could prove useful
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Benefits

Linear time—branching time
spectrum

◮ By Van Glabbeek in 1993

◮ Spectrum gives us many

equivalences

◮ Goal: be as high in the

spectrum as possible

◮ Branching bisimulation
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Conceptual Model

To summarise

◮ We want a conceptual model of a computer rather than a model of

computation

◮ We want to have non-termination and to make interaction explicit

◮ We use concurrency theory to have a plethora of process calculi,

behavioural equivalences at our disposal

◮ Finite control is a program running on the CPU, tape is memory,

interaction possible via network or I/O to user

◮ We aim to integrate computability and concurrency theory

◮ Our aim is not to increase the computational power of the

traditional model nor to investigate the extra expressivity of

interaction
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Reactive Turing Machines

Let’s consider an example:

o

b

e

f

[#/�]L

[1/�]L
[�/�]R

[#/#]R

[1/1]R

[1/1]R



9/16

/department of mathematics and computer science

Reactive Turing Machines

Let’s consider an example:

o

b

e

f

τ [#/�]L

τ [1/�]L
τ [�/�]R

τ [#/#]R

τ [1/1]R

τ [1/1]R



9/16

/department of mathematics and computer science

Reactive Turing Machines

Let’s consider an example:
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Reactive Turing Machines (2)
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Reactive Turing Machines (3)
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Reactive Turing Machines (3)
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Reactive Turing Machines (3)
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Reactive Turing Machines (3)
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Reactive Turing Machines (4)
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Reactive Turing Machines (4)
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Reactive Turing Machines (4)
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Reactive Turing Machines (4)
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◮ The examples are deterministic RTM for simplification purposes
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Technical Results

Expressivity

1. Effective transition systems are branching bisimilar with transition

systems associated with with an RTM
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Technical Results

Expressivity
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2. Deterministic computable transition systems are branching
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Technical Results

Expressivity

1. Effective transition systems are branching bisimilar with transition

systems associated with with an RTM

2. Deterministic computable transition systems are branching

bisimilar with transition systems associated with with an RTM

Notes

◮ In one and only one state we have to make the choice!

◮ In case of bounded computable transition systems we can be

divergence-sensitive!

Corollary

Parallelism does not add computational power
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Technical Results

Expressivity

1. Effective transition systems are branching bisimilar with transition

systems associated with with an RTM

2. Deterministic computable transition systems are branching
bisimilar with transition systems associated with with an RTM

3. For every RTM there exists a finite recursive specification in ACPτ

such that the respective associated transition systems are

branching bisimilar
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Contributions

We have established

◮ . . . a conceptual model of a computer

◮ . . . that integrates computability and concurrency theory

◮ . . . and implies the classical Turing machine
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Related and Future Work

Related work

◮ Persistent Turing machines by Goldin, Smolka, Attie, Sonderegger

◮ Interactive Turing machines with advice by Van Leeuwen &

Wiedermann

◮ . . .

Future work

◮ Universal reactive Turing machine

◮ Variant definitions (e.g. different termination conditions)

◮ Relation with persistent Turing machine and interactive Turing

machine with advice

◮ Relation with process calculi, e.g. π-calculus
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Thank you!

Questions?


