Second Assignment Automata \& Process Theory (2IT15)

Department of Mathematics \& Computer Science
Eindhoven University of Technology

Saturday, 22 May 2010

The deadline of this assignment is Friday, 4 June 2010. The assignment is graded in the week thereafter and resulting grade will be worth 12.5% of the total grade.

Assignment 1. Consider the following language L over the alphabet $\{a, b, c\}$:

$$
L=\left\{a^{2 n} b^{m} c^{3 n+m} \mid m>0, n \geq 0\right\}
$$

a. Give a recursive specification over SA for the language L.
b. Construct a push-down automaton for the language L. Motivate the construction by indicating what the stack contents and states represent.

Assignment 2. Consider the following recursive specification over SA

$$
\begin{array}{ll}
S=a . A \cdot B+b . A \cdot F+S \cdot D, & D=d . D \cdot E, \\
A=A \cdot B \cdot A+B+a . \mathbf{1}+\mathbf{1}, & \\
B=b . B+\mathbf{1}, & F=F+a . \mathbf{0} \cdot B . \\
C=a . A+B, &
\end{array}
$$

a. Simplify the recursive specification using language equivalence by applying the following procedures (if possible) to remove: zeroes, 1 -summands, unreachable variables, single variable summands, head recursion, and nonproductive variables. Give intermediate steps of this simplification by showing the result of each procedure.
b. Transform the simplified recursive specification in Greibach normal form.
c. Give a derivation that shows that $a b b a \in \mathcal{L}(S)$.
d. Show whether the recursive specification of (b) is ambiguous or not.

