First Midterm Exam Theory of Automata and Processes (2XT15)

12 March 2008, 14.00-15.30
Faculteit Wiskunde en Informatica
Technische Universiteit Eindhoven (TU/e)

This is a "closed book" exam. The parts add up to 50 points, the grade is obtained by dividing the total number of points by 5 . Motivate your answers!

Assignment 1 . Consider the language of all strings over the alphabet $\{a, b\}$ that contain at most two a 's.
a. Draw an automaton that accepts this language. (6 points)
b. Give a linear recursive specification for this automaton. (5 points)
c. Give an iteration expression for this automaton. (6 points)

Assignment 2 . Given is the following iteration expression:

$$
r=(a . \mathbf{1})^{*} \cdot(b . \mathbf{1})^{*}+(b . \mathbf{1})^{*} \cdot(a . \mathbf{1})^{*} .
$$

Use the operational rules to find the automaton for this expression. In every state, give the derived iteration expression. (7 points)

Assignment 3 . In this assignment, we use alphabet $\mathcal{A}=\{a, b\}$. Given is the recursive specification

$$
\begin{array}{rl}
S & \leftrightarrows \\
T & a . T+b . U+a . \mathbf{1}+b . \mathbf{1} \\
U & \leftrightarrows \\
& b . T+b . \mathbf{1} \\
& b .1
\end{array}
$$

Draw a deterministic automaton that accepts the language generated by this specification. (10 points)

Assignment 4 . Show, by using the pumping lemma, that the language $\left\{a^{n} b^{k} \mid 0<n<k\right\}$ is not regular. (16 points)

