First Midterm Exam Theory of Automata and Processes (2XT15)

14 March 2009, $9.00-10.30$
Faculteit Wiskunde en Informatica
Technische Universiteit Eindhoven (TU/e)

This is a "closed book" exam. The parts add up to 50 points, the grade is obtained by dividing the total number of points by 5 . Motivate your answers!

Assignment 1 . Consider the language of all strings over the alphabet $\{a, b\}$ that contain at least one a and at most one b. Draw an automaton that accepts this language. (10 points)

Assignment 2 . Given is the following recursive specification:

$$
\begin{aligned}
S & =a \cdot(C+D)+a .(C+E) \\
T & =a \cdot(C+D+E) \\
C & =\tau \cdot(D+E) \\
D & =\text { b.d. } \mathbf{1} \\
E & =b \cdot e . \mathbf{1}
\end{aligned}
$$

Draw the finite automaton of S and of T separately. Are these two automata branching bisimilar? If so, show a branching bisimulation, if not, argue why not. (13 points)

Assignment 3 . In this assignment, we use alphabet $\mathcal{A}=\{a, b\}$. Given is the following recursive specification with initial variable S

$$
\begin{aligned}
S & =a \cdot S+b \cdot S+a \cdot T \\
T & =a \cdot U \\
U & =b \cdot V \\
V & =\mathbf{1}
\end{aligned}
$$

Draw a deterministic automaton that accepts the language generated by this specification. (13 points)

Assignment 4 . Show, by using the pumping lemma, that the language

$$
\left\{w \in\{a, b\}^{*} \mid \#_{a}(w)<\#_{b}(w)\right\}
$$

is not regular. (14 points)

